ask-candid / chat_v2.py
brainsqueeze's picture
v2 of public chat
ef088c2 verified
raw
history blame
9.04 kB
from typing import TypedDict, Any
from collections.abc import Iterator, AsyncIterator
import os
import gradio as gr
from langgraph.graph.state import CompiledStateGraph
from langgraph.prebuilt import create_react_agent
from langchain_aws import ChatBedrock
import boto3
from ask_candid.tools.org_search import OrganizationIdentifier, find_mentioned_organizations
from ask_candid.tools.search import search_candid_knowledge_base
from ask_candid.tools.general import get_current_day
from ask_candid.utils import html_format_docs_chat
from ask_candid.base.config.constants import START_SYSTEM_PROMPT
from ask_candid.base.config.models import Name2Endpoint
from ask_candid.chat import convert_history_for_graph_agent, format_tool_call, format_tool_response
try:
from feedback import FeedbackApi
ROOT = "."
except ImportError:
from demos.feedback import FeedbackApi
ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..")
BOT_LOGO = os.path.join(ROOT, "static", "candid_logo_yellow.png")
if not os.path.isfile(BOT_LOGO):
BOT_LOGO = os.path.join(ROOT, "..", "..", "static", "candid_logo_yellow.png")
class LoggedComponents(TypedDict):
context: list[gr.Component]
found_helpful: gr.Component
will_recommend: gr.Component
comments: gr.Component
email: gr.Component
def build_execution_graph() -> CompiledStateGraph:
llm = ChatBedrock(
client=boto3.client("bedrock-runtime", region_name="us-east-1"),
model=Name2Endpoint["claude-3.5-haiku"]
)
org_name_recognition = OrganizationIdentifier(llm=llm) # bind the main chat model to the tool
return create_react_agent(
model=llm,
tools=[
get_current_day,
org_name_recognition,
find_mentioned_organizations,
search_candid_knowledge_base
],
)
def generate_postscript_messages(history: list[gr.ChatMessage]) -> Iterator[gr.ChatMessage]:
for record in history:
title = record.metadata.get("tool_name")
if title == search_candid_knowledge_base.name:
yield gr.ChatMessage(
role="assistant",
content=html_format_docs_chat(record.metadata.get("documents")),
metadata={
"title": "Source citations",
}
)
elif title == find_mentioned_organizations.name:
pass
async def execute(
user_input: dict[str, Any],
history: list[gr.ChatMessage]
) -> AsyncIterator[tuple[gr.Component, list[gr.ChatMessage]]]:
if len(history) == 0:
history.append(gr.ChatMessage(role="system", content=START_SYSTEM_PROMPT))
history.append(gr.ChatMessage(role="user", content=user_input["text"]))
for fname in user_input.get("files") or []:
fname: str
if fname.endswith('.txt'):
with open(fname, 'r', encoding='utf8') as f:
history.append(gr.ChatMessage(role="user", content=f.read()))
yield gr.MultimodalTextbox(value=None, interactive=True), history
horizon = len(history)
inputs = {"messages": convert_history_for_graph_agent(history)}
graph = build_execution_graph()
history.append(gr.ChatMessage(role="assistant", content=""))
async for stream_mode, chunk in graph.astream(inputs, stream_mode=["messages", "tasks"]):
if stream_mode == "messages" and chunk[0].content:
for msg in chunk[0].content:
if 'text' in msg:
history[-1].content += msg["text"]
yield gr.MultimodalTextbox(value=None, interactive=True), history
elif stream_mode == "tasks" and chunk.get("name") == "tools" and chunk.get("error") is None:
if "input" in chunk:
for msg in format_tool_call(chunk):
history.append(msg)
yield gr.MultimodalTextbox(value=None, interactive=True), history
elif "result" in chunk:
for msg in format_tool_response(chunk):
history.append(msg)
yield gr.MultimodalTextbox(value=None, interactive=True), history
history.append(gr.ChatMessage(role="assistant", content=""))
for post_msg in generate_postscript_messages(history=history[horizon:]):
history.append(post_msg)
yield gr.MultimodalTextbox(value=None, interactive=True), history
def send_feedback(
chat_context,
found_helpful,
will_recommend,
comments,
email
):
api = FeedbackApi()
total_submissions = 0
try:
response = api(
context=chat_context,
found_helpful=found_helpful,
will_recommend=will_recommend,
comments=comments,
email=email
)
total_submissions = response.get("response", 0)
gr.Info("Thank you for submitting feedback")
except Exception as ex:
raise gr.Error(f"Error submitting feedback: {ex}")
return total_submissions
def build_chat_app():
with gr.Blocks(theme=gr.themes.Soft(), title="Chat") as demo:
gr.Markdown(
"""
<h1>Candid's AI assistant</h1>
<p>
Please read the <a
href='https://info.candid.org/chatbot-reference-guide'
target="_blank"
rel="noopener noreferrer"
>guide</a> to get started.
</p>
<hr>
"""
)
with gr.Column():
chatbot = gr.Chatbot(
label="AskCandid",
elem_id="chatbot",
editable="user",
avatar_images=(
None, # user
BOT_LOGO, # bot
),
height="60vh",
type="messages",
show_label=False,
show_copy_button=True,
autoscroll=True,
layout="panel",
)
msg = gr.MultimodalTextbox(label="Your message", interactive=True)
gr.ClearButton(components=[msg, chatbot], size="sm")
# pylint: disable=no-member
# chatbot.like(fn=like_callback, inputs=chatbot, outputs=None)
msg.submit(
fn=execute,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
show_api=False
)
logged = LoggedComponents(context=chatbot)
return demo, logged
def build_feedback(components: LoggedComponents) -> gr.Blocks:
with gr.Blocks(theme=gr.themes.Soft(), title="Candid AI demo") as demo:
gr.Markdown("<h1>Help us improve this tool with your valuable feedback</h1>")
with gr.Row():
with gr.Column():
found_helpful = gr.Radio(
[True, False], label="Did you find what you were looking for?"
)
will_recommend = gr.Radio(
[True, False],
label="Will you recommend this Chatbot to others?",
)
comment = gr.Textbox(label="Additional comments (optional)", lines=4)
email = gr.Textbox(label="Your email (optional)", lines=1)
submit = gr.Button("Submit Feedback")
components["found_helpful"] = found_helpful
components["will_recommend"] = will_recommend
components["comments"] = comment
components["email"] = email
# pylint: disable=no-member
submit.click(
fn=send_feedback,
inputs=[
components["context"],
components["found_helpful"],
components["will_recommend"],
components["comments"],
components["email"]
],
outputs=None,
show_api=False,
api_name=False,
preprocess=False,
)
return demo
def build_app():
candid_chat, logger = build_chat_app()
feedback = build_feedback(logger)
with open(os.path.join(ROOT, "static", "chatStyle.css"), "r", encoding="utf8") as f:
css_chat = f.read()
demo = gr.TabbedInterface(
interface_list=[
candid_chat,
feedback
],
tab_names=[
"Candid's AI assistant",
"Feedback"
],
title="Candid's AI assistant",
theme=gr.themes.Soft(),
css=css_chat,
)
return demo
if __name__ == "__main__":
app = build_app()
app.queue(max_size=5).launch(
show_api=False,
mcp_server=False,
auth=[
(os.getenv("APP_USERNAME"), os.getenv("APP_PASSWORD")),
(os.getenv("APP_PUBLIC_USERNAME"), os.getenv("APP_PUBLIC_PASSWORD")),
],
auth_message="Login to Candid's AI assistant",
)