Spaces:
Running
Running
Delete tools
Browse files- tools/__init__.py +0 -0
- tools/config.py +0 -5
- tools/org_seach.py +0 -196
- tools/question_reformulation.py +0 -44
tools/__init__.py
DELETED
File without changes
|
tools/config.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
CDS_API = {
|
3 |
-
'CDS_API_URL': os.getenv('CDS_API_URL'),
|
4 |
-
'CDS_API_KEY': os.getenv('CDS_API_KEY')
|
5 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
tools/org_seach.py
DELETED
@@ -1,196 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
import re
|
3 |
-
|
4 |
-
from fuzzywuzzy import fuzz
|
5 |
-
|
6 |
-
from langchain.output_parsers.openai_tools import JsonOutputToolsParser
|
7 |
-
from langchain_openai.chat_models import ChatOpenAI
|
8 |
-
from langchain_core.runnables import RunnableSequence
|
9 |
-
from langchain_core.prompts import ChatPromptTemplate
|
10 |
-
from pydantic import BaseModel, Field
|
11 |
-
|
12 |
-
try:
|
13 |
-
from common.org_search_component import OrgSearch
|
14 |
-
except ImportError:
|
15 |
-
from ...common.org_search_component import OrgSearch
|
16 |
-
|
17 |
-
search = OrgSearch()
|
18 |
-
|
19 |
-
|
20 |
-
class OrganizationNames(BaseModel):
|
21 |
-
"""List of names of social-sector organizations, such as nonprofits and foundations."""
|
22 |
-
orgnames: List[str] = Field(description="List of organization names")
|
23 |
-
|
24 |
-
|
25 |
-
def extract_org_links_from_chatbot(chatbot_output: str):
|
26 |
-
"""
|
27 |
-
Extracts a list of organization names from the provided text.
|
28 |
-
|
29 |
-
Args:
|
30 |
-
chatbot_output (str):The chatbot output containing organization names and other content.
|
31 |
-
|
32 |
-
Returns:
|
33 |
-
list: A list of organization names extracted from the text.
|
34 |
-
|
35 |
-
Raises:
|
36 |
-
ValueError: If parsing fails or if an unexpected output format is received.
|
37 |
-
"""
|
38 |
-
prompt = """Extract only the names of officially recognized organizations, foundations, and government entities
|
39 |
-
from the text below. Do not include any entries that contain descriptions, regional identifiers, or explanations
|
40 |
-
within parentheses or following the name. Strictly exclude databases, resources, crowdfunding platforms, and general
|
41 |
-
terms. Provide the output only in the specified JSON format.
|
42 |
-
|
43 |
-
input text below:
|
44 |
-
|
45 |
-
```{chatbot_output}``
|
46 |
-
|
47 |
-
output format:
|
48 |
-
{{
|
49 |
-
'orgnames' : [list of organization names without any additional descriptions or identifiers]
|
50 |
-
}}
|
51 |
-
|
52 |
-
"""
|
53 |
-
|
54 |
-
try:
|
55 |
-
parser = JsonOutputToolsParser()
|
56 |
-
llm = ChatOpenAI(model="gpt-4o").bind_tools([OrganizationNames])
|
57 |
-
prompt = ChatPromptTemplate.from_template(prompt)
|
58 |
-
chain = RunnableSequence(prompt, llm, parser)
|
59 |
-
|
60 |
-
# Run the chain with the input data
|
61 |
-
result = chain.invoke({"chatbot_output": chatbot_output})
|
62 |
-
|
63 |
-
# Extract the organization names from the output
|
64 |
-
output_list = result[0]["args"].get("orgnames", [])
|
65 |
-
|
66 |
-
# Validate output format
|
67 |
-
if not isinstance(output_list, list):
|
68 |
-
raise ValueError("Unexpected output format: 'orgnames' should be a list")
|
69 |
-
|
70 |
-
return output_list
|
71 |
-
|
72 |
-
except Exception as e:
|
73 |
-
# Log or print the error as needed for debugging
|
74 |
-
print(f"text does not have any organization: {e}")
|
75 |
-
return []
|
76 |
-
|
77 |
-
|
78 |
-
def is_similar(name: str, list_of_dict: list, threshold: int = 80):
|
79 |
-
"""
|
80 |
-
Returns True if `name` is similar to any names in `list_of_dict` based on a similarity threshold.
|
81 |
-
"""
|
82 |
-
try:
|
83 |
-
for item in list_of_dict:
|
84 |
-
try:
|
85 |
-
# Attempt to calculate similarity score
|
86 |
-
similarity = fuzz.ratio(name.lower(), item["name"].lower())
|
87 |
-
if similarity >= threshold:
|
88 |
-
return True
|
89 |
-
except KeyError:
|
90 |
-
# Handle cases where 'name' key might be missing in dictionary
|
91 |
-
print(f"KeyError: Missing 'name' key in dictionary item {item}")
|
92 |
-
continue
|
93 |
-
except AttributeError:
|
94 |
-
# Handle non-string name values in dictionary items
|
95 |
-
print(f"AttributeError: Non-string 'name' in dictionary item {item}")
|
96 |
-
continue
|
97 |
-
except TypeError as e:
|
98 |
-
# Handle cases where input types are incorrect
|
99 |
-
print(f"TypeError: {e}")
|
100 |
-
return False
|
101 |
-
|
102 |
-
return False
|
103 |
-
|
104 |
-
|
105 |
-
def generate_org_link_dict(org_names_list: list):
|
106 |
-
"""
|
107 |
-
Maps organization names to their Candid profile URLs if available.
|
108 |
-
|
109 |
-
For each organization in `output_list`, this function attempts to retrieve a matching profile
|
110 |
-
using `search_org`. If a similar name is found and a Candid entity ID is available, it constructs
|
111 |
-
a profile URL. If no ID or similar match is found, or if an error occurs, it assigns an empty string.
|
112 |
-
|
113 |
-
Args:
|
114 |
-
output_list (list): List of organization names (str) to retrieve Candid profile links for.
|
115 |
-
|
116 |
-
Returns:
|
117 |
-
dict: Dictionary with organization names as keys and Candid profile URLs or empty strings as values.
|
118 |
-
|
119 |
-
Example:
|
120 |
-
get_org_link(['New York-Presbyterian Hospital'])
|
121 |
-
# {'New York-Presbyterian Hospital': 'https://app.candid.org/profile/6915255'}
|
122 |
-
"""
|
123 |
-
link_dict = {}
|
124 |
-
|
125 |
-
for org in org_names_list:
|
126 |
-
try:
|
127 |
-
# Attempt to retrieve organization data
|
128 |
-
response = search(org, name_only=True)
|
129 |
-
|
130 |
-
# Check if there is a valid response and if names are similar
|
131 |
-
if response and is_similar(org, response[0].get("names", "")):
|
132 |
-
# Try to get the Candid entity ID and construct the URL
|
133 |
-
candid_entity_id = response[0].get("candid_entity_id")
|
134 |
-
if candid_entity_id:
|
135 |
-
link_dict[org] = (
|
136 |
-
f"https://app.candid.org/profile/{candid_entity_id}"
|
137 |
-
)
|
138 |
-
else:
|
139 |
-
link_dict[org] = "" # No ID found, set empty string
|
140 |
-
else:
|
141 |
-
link_dict[org] = "" # No similar match found
|
142 |
-
|
143 |
-
except KeyError as e:
|
144 |
-
# Handle missing keys in the response dictionary
|
145 |
-
print(f"KeyError encountered for organization '{org}': {e}")
|
146 |
-
link_dict[org] = ""
|
147 |
-
|
148 |
-
except Exception as e:
|
149 |
-
# Catch any other unexpected errors
|
150 |
-
|
151 |
-
print(f"An error occurred for organization '{org}': {e}")
|
152 |
-
link_dict[org] = ""
|
153 |
-
|
154 |
-
return link_dict
|
155 |
-
|
156 |
-
|
157 |
-
def embed_org_links_in_text(input_text: str, org_link_dict: dict):
|
158 |
-
"""
|
159 |
-
Replaces organization names in `text` with links from `link_dict` and appends a Candid info message.
|
160 |
-
|
161 |
-
Args:
|
162 |
-
text (str): The text containing organization names.
|
163 |
-
link_dict (dict): Mapping of organization names to URLs.
|
164 |
-
|
165 |
-
Returns:
|
166 |
-
str: Updated text with linked organization names and an appended Candid message.
|
167 |
-
"""
|
168 |
-
try:
|
169 |
-
for org_name, url in org_link_dict.items():
|
170 |
-
if url: # Only proceed if the URL is not empty
|
171 |
-
regex_pattern = re.compile(re.escape(org_name))
|
172 |
-
input_text = regex_pattern.sub(
|
173 |
-
repl=f"<a href={url} target='_blank' rel='noreferrer' class='candid-org-link'>{org_name}</a>",
|
174 |
-
string=input_text
|
175 |
-
)
|
176 |
-
|
177 |
-
# Append Candid information message at the end
|
178 |
-
input_text += (
|
179 |
-
"<p class='candid-app-link'> "
|
180 |
-
"Visit <a href=https://app.candid.org/ target='_blank' rel='noreferrer' class='candid-org-link'>Candid</a> "
|
181 |
-
"to get nonprofit information you need.</p>"
|
182 |
-
)
|
183 |
-
|
184 |
-
except TypeError as e:
|
185 |
-
print(f"TypeError encountered: {e}")
|
186 |
-
return input_text
|
187 |
-
|
188 |
-
except re.error as e:
|
189 |
-
print(f"Regex error encountered for '{org_name}': {e}")
|
190 |
-
return input_text
|
191 |
-
|
192 |
-
except Exception as e:
|
193 |
-
print(f"Unexpected error: {e}")
|
194 |
-
return input_text
|
195 |
-
|
196 |
-
return input_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tools/question_reformulation.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from langchain_core.prompts import ChatPromptTemplate
|
2 |
-
from langchain_core.output_parsers import StrOutputParser
|
3 |
-
|
4 |
-
|
5 |
-
def reformulate_question_using_history(state, llm):
|
6 |
-
"""
|
7 |
-
Transform the query to produce a better query with details from previous messages.
|
8 |
-
|
9 |
-
Args:
|
10 |
-
state (messages): The current state
|
11 |
-
llm: LLM to use
|
12 |
-
Returns:
|
13 |
-
dict: The updated state with re-phrased question and original user_input for UI
|
14 |
-
"""
|
15 |
-
print("---REFORMULATE THE USER INPUT---")
|
16 |
-
messages = state["messages"]
|
17 |
-
question = messages[-1].content
|
18 |
-
|
19 |
-
if len(messages) > 1:
|
20 |
-
contextualize_q_system_prompt = """Given a chat history and the latest user input \
|
21 |
-
which might reference context in the chat history, formulate a standalone input \
|
22 |
-
which can be understood without the chat history.
|
23 |
-
Chat history:
|
24 |
-
\n ------- \n
|
25 |
-
{chat_history}
|
26 |
-
\n ------- \n
|
27 |
-
User input:
|
28 |
-
\n ------- \n
|
29 |
-
{question}
|
30 |
-
\n ------- \n
|
31 |
-
Do NOT answer the question, \
|
32 |
-
just reformulate it if needed and otherwise return it as is.
|
33 |
-
"""
|
34 |
-
|
35 |
-
contextualize_q_prompt = ChatPromptTemplate([
|
36 |
-
("system", contextualize_q_system_prompt),
|
37 |
-
("human", question),
|
38 |
-
])
|
39 |
-
|
40 |
-
rag_chain = contextualize_q_prompt | llm | StrOutputParser()
|
41 |
-
new_question = rag_chain.invoke({"chat_history": messages, "question": question})
|
42 |
-
print(f"user asked: '{question}', agent reformulated the question basing on the chat history: {new_question}")
|
43 |
-
return {"messages": [new_question], "user_input" : question}
|
44 |
-
return {"messages": [question], "user_input" : question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|