File size: 9,299 Bytes
89723c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45ef7d8
89723c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import gradio as gr
import requests
import os
import random
import uuid
from datetime import datetime
import csv
from huggingface_hub import HfApi

# This is a placeholder for the Hugging Face token.
# In a real environment, you would get this from a secure location.
HF_TOKEN = os.getenv("HF_Key")

# Three models: base, math, general (from environment variables set in HF Space secrets)
MODEL_INFOS = [
    {
        "name": "Base",
        "endpoint_url": os.getenv("BASE_ENDPOINT_URL", "https://o3pz2i9x2k6otr2a.eu-west-1.aws.endpoints.huggingface.cloud/v1/"),
        "model": os.getenv("BASE_ENDPOINT_MODEL", "qwen3-4b-instruct-2507-pxe")
    },
    {
        "name": "Math",
        "endpoint_url": os.getenv("MATH_ENDPOINT_URL", "https://jockj5ko30gpg5lg.eu-west-1.aws.endpoints.huggingface.cloud/v1/"),
        "model": os.getenv("MATH_ENDPOINT_MODEL", "teach-math-qwen3-4b-2507-r1--uab")
    },
    {
        "name": "General",
        "endpoint_url": os.getenv("GENERAL_ENDPOINT_URL", "https://ucewop5x3jsguqwq.eu-west-1.aws.endpoints.huggingface.cloud/v1/"),
        "model": os.getenv("GENERAL_ENDPOINT_MODEL", "CanisAI/teach-generalist-qwen3-4b-2507-r1-merged")
    },
]

# Dataset repo ID - change this to your actual dataset repo
DATASET_REPO_ID = "CanisAI/mvlg-data"

api = HfApi()

# Feedback points (sliders 1-10) - education-specific criteria
FEEDBACK_POINTS = [
    "How clear was the explanation?",
    "How helpful were the steps in guiding you to the solution?",
    "How well did the assistant adapt to your learning style?",
    "How motivating and encouraging was the response?",
    "How accurate and reliable was the information provided?",
    "How relevant was the information to your question?",
    "How natural and conversational was the interaction?",
    "How much do you trust the assistant?"
]

def query_chat_endpoint(endpoint_url, model, messages, max_tokens=150, temperature=0.7):
    url = endpoint_url.rstrip("/") + "/chat/completions"
    headers = {
        "Accept": "application/json",
        "Content-Type": "application/json",
        "Authorization": f"Bearer {HF_TOKEN}"
    }
    payload = {
        "model": model,
        "messages": messages,
        "max_tokens": max_tokens,
        "temperature": temperature,
        "stream": False
    }
    try:
        response = requests.post(url, headers=headers, json=payload)
        response.raise_for_status()
        result = response.json()
        return result["choices"][0]["message"]["content"]
    except Exception as e:
        return f"Error: {str(e)}"

def chat_multi_llm(message, history, current_model_state, conversation_id_state):
    if history is None:
        history = []
    if current_model_state is None:
        current_model_state = random.choice(MODEL_INFOS)
        conversation_id_state = str(uuid.uuid4())
    messages = [{"role": msg["role"], "content": msg["content"]} for msg in history]
    messages.append({"role": "user", "content": message})
    model_name = current_model_state["name"]
    endpoint_url = current_model_state["endpoint_url"]
    model = current_model_state["model"]
    answer = query_chat_endpoint(endpoint_url, model, messages)
    log_chat_to_csv(message, history, {model_name: answer}, model_name, conversation_id_state)
    new_history = history + [{"role": "user", "content": message}, {"role": "assistant", "content": answer}]
    return new_history, current_model_state, conversation_id_state

def log_chat_to_csv(message, history, results, used_model, conversation_id, filename="chat_conversations_log.csv"):
    from os.path import isfile
    file_exists = isfile(filename)
    with open(filename, mode="a", encoding="utf-8", newline="") as csvfile:
        writer = csv.writer(csvfile)
        if not file_exists:
            header = ["timestamp", "conversation_id", "history", "user_message", "used_model", "response"]
            writer.writerow(header)
        row = [datetime.now().isoformat(), conversation_id, str(history), message, used_model, list(results.values())[0]]
        writer.writerow(row)

    # Upload to Hugging Face dataset repo
    try:
        api.upload_file(
            path_or_fileobj=filename,
            path_in_repo=filename,
            repo_id=DATASET_REPO_ID,
            repo_type="dataset",
            token=HF_TOKEN
        )
    except Exception as e:
        print(f"Error uploading to HF dataset: {e}")

def submit_feedback(current_model, conversation_id, *slider_values):
    filename = "feedback_log.csv"
    from os.path import isfile
    file_exists = isfile(filename)

    with open(filename, "a", encoding="utf-8", newline="") as f:
        writer = csv.writer(f)
        if not file_exists:
            writer.writerow(["timestamp", "conversation_id", "used_model"] + FEEDBACK_POINTS)
        writer.writerow([
            datetime.now().isoformat(),
            conversation_id,
            current_model["name"] if current_model else "None"
        ] + list(slider_values))

    # Upload feedback to HF dataset repo
    try:
        api.upload_file(
            path_or_fileobj=filename,
            path_in_repo=filename,
            repo_id=DATASET_REPO_ID,
            repo_type="dataset",
            token=HF_TOKEN
        )
    except Exception as e:
        print(f"Error uploading feedback to HF dataset: {e}")

    return (
        gr.update(visible=False),  # feedback_col
        gr.update(visible=True),  # chat_col
        gr.update(value="Thank you! You can start a new conversation.", visible=True),  # feedback_info
        [],  # history_state - reset
        None,  # current_model_state - reset
        None,  # conversation_id_state - reset
        gr.update(interactive=True),  # msg
        gr.update(interactive=True),  # submit_btn
        [],  # chatbot - reset
        gr.update(visible=False)  # end_info - hide
    )

with gr.Blocks() as demo:
    gr.Markdown("""
    # LLM Case Study: Multi-Model Chat Comparison
    Start a conversation. After finishing, you can provide feedback and start a new conversation. By Using the app you accept that your interactions and feedback will be logged and used for research purposes. Please don't share any personal, sensitive, or confidential information.
    """)

    history_state = gr.BrowserState([])  # persists across page refreshes
    # Persist the selected model and conversation id in the browser so they
    # survive page refreshes. Using BrowserState prevents the model from
    # being re-selected randomly mid-conversation on reload.
    current_model_state = gr.BrowserState(None)
    conversation_id_state = gr.BrowserState(None)

    with gr.Column(visible=True) as chat_col:
        chatbot = gr.Chatbot(type="messages", value=[])
        msg = gr.Textbox(placeholder="Enter your message...", show_label=False)
        submit_btn = gr.Button("Send")
        end_btn = gr.Button("End conversation and give feedback")
        end_info = gr.Markdown("", visible=False)

    with gr.Column(visible=False) as feedback_col:
        sliders = [gr.Slider(1, 10, value=5, step=1, label=label) for label in FEEDBACK_POINTS]
        feedback_btn = gr.Button("Submit feedback and start new conversation")
        feedback_info = gr.Markdown("", visible=False)

    def user_message(message, history, current_model, conversation_id):
        if message is None or message.strip() == "":
            return history, "", history, current_model, conversation_id
        new_history, updated_model, updated_conv_id = chat_multi_llm(message, history, current_model, conversation_id)
        return new_history, "", new_history, updated_model, updated_conv_id

    def load_chat_history(history):
        """Load the chat history into the chatbot on page load"""
        if history is None:
            return []
        return history

    def end_conversation():
        return (
            gr.update(visible=True),  # feedback_col
            gr.update(visible=False),  # chat_col
            gr.update(value="Please provide feedback on the last conversation.", visible=True),  # end_info
            gr.update(interactive=False),  # msg
            gr.update(interactive=False)  # submit_btn
        )

    msg.submit(
        user_message,
        inputs=[msg, history_state, current_model_state, conversation_id_state],
        outputs=[chatbot, msg, history_state, current_model_state, conversation_id_state],
        queue=False
    )

    submit_btn.click(
        user_message,
        inputs=[msg, history_state, current_model_state, conversation_id_state],
        outputs=[chatbot, msg, history_state, current_model_state, conversation_id_state],
        queue=False
    )

    end_btn.click(
        end_conversation,
        inputs=None,
        outputs=[feedback_col, chat_col, end_info, msg, submit_btn]
    )

    feedback_btn.click(
        submit_feedback,
        inputs=[current_model_state, conversation_id_state] + sliders,
        outputs=[feedback_col, chat_col, feedback_info, history_state, current_model_state, conversation_id_state, msg, submit_btn, chatbot, end_info]
    )

    # Load chat history from BrowserState on page load
    demo.load(
        load_chat_history,
        inputs=[history_state],
        outputs=[chatbot]
    )

if __name__ == "__main__":
    demo.launch()