Spaces:
Sleeping
Sleeping
File size: 34,294 Bytes
21ecee1 09445d5 21ecee1 09445d5 21ecee1 09445d5 21ecee1 09445d5 21ecee1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
#
# Contato:
# Carlos Rodrigues dos Santos
# carlex22@gmail.com
#
# Repositórios e Projetos Relacionados:
# GitHub: https://github.com/carlex22/Aduc-sdr
# YouTube (Resultados): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ
# Hugging Face: https://huggingface.co/spaces/Carlexx/ADUC-Sdr_Gemini_Drem0_Ltx_Video60seconds/
#
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
# Free Software Foundation, seja a versão 3 da Licença, ou
# (a seu critério) qualquer versão posterior.
#
# Este programa é distribuído na esperança de que seja útil,
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
# Licença Pública Geral Affero da GNU para mais detalhes.
#
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
# --- app.py (ADUC-SDR-5.2: Correção Final de Indentação) ---
import gradio as gr
import torch
import os
import re
import yaml
from PIL import Image, ImageOps, ExifTags
import shutil
import subprocess
import google.generativeai as genai
import numpy as np
import imageio
from pathlib import Path
import json
import time
import math
import threading
from queue import Queue
import sys
import traceback
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from flux_kontext_helpers import flux_kontext_singleton
from ltx_manager_helpers import ltx_manager_singleton
from ltx_upscaler_manager_helpers import ltx_upscaler_manager_singleton
WORKSPACE_DIR = "aduc_workspace"
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
# ======================================================================================
# SEÇÃO 0: LOGGING CONTROLADO PARA A UI
# ======================================================================================
log_history = ""
log_lock = threading.Lock()
def log_message(message):
global log_history
print(message, flush=True)
with log_lock:
log_history += str(message) + "\n"
def clear_logs():
global log_history
with log_lock:
log_history = ""
def get_console_logs():
with log_lock:
return log_history
# ======================================================================================
# SEÇÃO 1: FUNÇÕES UTILITÁRIAS E DE PROCESSAMENTO DE MÍDIA
# ======================================================================================
def robust_json_parser(raw_text: str) -> dict:
clean_text = raw_text.strip()
try:
start_index = clean_text.find('{'); end_index = clean_text.rfind('}')
if start_index != -1 and end_index != -1 and end_index > start_index:
json_str = clean_text[start_index : end_index + 1]
return json.loads(json_str)
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
def process_image_to_square(image_path: str, size: int, output_filename: str = None) -> str:
if not image_path: return None
try:
img = Image.open(image_path).convert("RGB")
img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
if output_filename: output_path = os.path.join(WORKSPACE_DIR, output_filename)
else: output_path = os.path.join(WORKSPACE_DIR, f"edited_ref_{time.time()}.png")
img_square.save(output_path)
return output_path
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
try:
command = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\""
subprocess.run(command, shell=True, check=True, text=True)
return output_path
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {getattr(e, 'stderr', str(e))}")
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str:
try:
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\""
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True)
total_frames = int(result.stdout.strip())
if n_frames >= total_frames:
shutil.copyfile(input_path, output_path)
return output_path
start_frame = total_frames - n_frames
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\""
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True)
return output_path
except (subprocess.CalledProcessError, ValueError) as e: raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}")
def concatenate_final_video(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()):
if not fragment_paths:
raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
progress(0.1, desc="Preparando fragmentos para a montagem final...");
try:
list_file_path = os.path.abspath(os.path.join(WORKSPACE_DIR, f"concat_list_final_{time.time()}.txt"))
final_output_path = os.path.abspath(os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4"))
temp_files_for_concat = []
duration_for_non_cut_fragments = max(1, int(fragment_duration_frames - eco_video_frames))
sorted_fragment_paths = sorted(fragment_paths)
for i, p in enumerate(sorted_fragment_paths):
is_last_fragment = (i == len(sorted_fragment_paths) - 1)
if "_cut" in os.path.basename(p) or is_last_fragment:
temp_files_for_concat.append(os.path.abspath(p))
else:
temp_path = os.path.join(WORKSPACE_DIR, f"final_temp_concat_{i}.mp4")
trim_video_to_frames(p, temp_path, duration_for_non_cut_fragments)
temp_files_for_concat.append(os.path.abspath(temp_path))
progress(0.8, desc="Concatenando clipe final...");
with open(list_file_path, "w") as f:
for p_temp in temp_files_for_concat:
f.write(f"file '{p_temp}'\n")
ffmpeg_command = f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\""
subprocess.run(ffmpeg_command, shell=True, check=True, text=True)
progress(1.0, desc="Montagem final concluída!");
return final_output_path
except subprocess.CalledProcessError as e:
raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr if e.stderr else 'Nenhum erro reportado.'}")
except Exception as e:
raise gr.Error(f"Um erro ocorreu durante a concatenação final: {e}")
def extract_image_exif(image_path: str) -> str:
try:
img = Image.open(image_path); exif_data = img._getexif()
if not exif_data: return "No EXIF metadata found."
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
return metadata_str if metadata_str else "No relevant EXIF metadata found."
except Exception: return "Could not read EXIF data."
# ======================================================================================
# SEÇÃO 2: ORQUESTRADORES DE IA
# ======================================================================================
def run_storyboard_generation(num_fragments: int, prompt: str, reference_paths: list):
clear_logs()
log_message("--- ETAPA 1: GERANDO ROTEIRO ---")
log_message(f"Prompt do usuário: '{prompt}'")
if not reference_paths: raise gr.Error("Por favor, forneça pelo menos uma imagem de referência.")
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
main_ref_path = reference_paths[0]
exif_metadata = extract_image_exif(main_ref_path)
prompt_file = "prompts/unified_storyboard_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.5-flash')
model_contents = [director_prompt]
for i, img_path in enumerate(reference_paths):
model_contents.append(f"Reference Image {i+1}:")
model_contents.append(Image.open(img_path))
log_message(f"Gerando roteiro com {len(reference_paths)} imagens de referência...")
response = model.generate_content(model_contents)
try:
storyboard_data = robust_json_parser(response.text)
storyboard = storyboard_data.get("scene_storyboard", [])
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
log_message(f"Roteiro de {len(storyboard)} cenas gerado com sucesso.")
return storyboard
except Exception as e:
log_message(f"!!!! ERRO AO GERAR ROTEIRO !!!!\n{e}\nResposta da IA:\n{response.text}")
raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}.")
def run_keyframe_generation(storyboard, fixed_reference_paths, keyframe_resolution, global_prompt, progress=gr.Progress()):
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
if not fixed_reference_paths: raise gr.Error("A imagem de referência inicial é obrigatória.")
initial_ref_image_path = fixed_reference_paths[0]
width, height = keyframe_resolution, keyframe_resolution
keyframe_paths_for_video = []
scene_history = "N/A"
wrapper_prompt_path = os.path.join(os.path.dirname(__file__), "prompts/flux_composition_wrapper_prompt.txt")
with open(wrapper_prompt_path, "r", encoding="utf-8") as f: kontext_template = f.read()
director_prompt_path = os.path.join(os.path.dirname(__file__), "prompts/director_composition_prompt.txt")
with open(director_prompt_path, "r", encoding="utf-8") as f: director_template = f.read()
try:
genai.configure(api_key=GEMINI_API_KEY)
model = genai.GenerativeModel('gemini-2.5-flash')
for i, scene_description in enumerate(storyboard):
progress(i / len(storyboard), desc=f"Compondo Keyframe {i+1}/{len(storyboard)}")
log_message(f"\n--- COMPONDO KEYFRAME {i+1}/{len(storyboard)} ---")
last_three_paths = ([initial_ref_image_path] + keyframe_paths_for_video)[-3:]
log_message(f" - Diretor de Cena está analisando o contexto...")
director_prompt = director_template.format(global_prompt=global_prompt, scene_history=scene_history, current_scene_desc=scene_description)
model_contents, image_map, current_image_index = [], {}, 1
for path in last_three_paths:
if path not in image_map.values():
image_map[current_image_index] = path
model_contents.extend([f"IMG-{current_image_index}:", Image.open(path)])
current_image_index += 1
for path in fixed_reference_paths:
if path not in image_map.values():
image_map[current_image_index] = path
model_contents.extend([f"IMG-{current_image_index}:", Image.open(path)])
current_image_index += 1
model_contents.append(director_prompt)
response_text = model.generate_content(model_contents).text
composition_prompt_with_tags = response_text.strip()
referenced_indices = [int(idx) for idx in re.findall(r'\[IMG-(\d+)\]', composition_prompt_with_tags)]
current_reference_paths = [image_map[idx] for idx in sorted(list(set(referenced_indices))) if idx in image_map]
if not current_reference_paths: current_reference_paths = [last_three_paths[-1]]
reference_images_pil = [Image.open(p) for p in current_reference_paths]
final_kontext_prompt = re.sub(r'\[IMG-\d+\]', '', composition_prompt_with_tags).strip()
log_message(f" - Prompt Final do Diretor: \"{final_kontext_prompt}\"")
scene_history += f"Scene {i+1}: {final_kontext_prompt}\n"
final_kontext_prompt_wrapped = kontext_template.format(target_prompt=final_kontext_prompt)
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
image = flux_kontext_singleton.generate_image(reference_images=reference_images_pil, prompt=final_kontext_prompt_wrapped, width=width, height=height, seed=int(time.time()))
image.save(output_path)
keyframe_paths_for_video.append(output_path)
except Exception as e:
log_message(f"!!!! ERRO AO GERAR KEYFRAME !!!!\n{traceback.format_exc()}")
raise gr.Error(f"O Compositor (FluxKontext) ou o Diretor de Cena (Gemini) falhou: {e}")
log_message("\nComposição de todos os keyframes concluída.")
final_keyframes = keyframe_paths_for_video
return final_keyframes, final_keyframes
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str):
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
try:
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-2.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
response = model.generate_content(model_contents)
return response.text.strip()
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
def get_transition_decision(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, midpoint_scene_description, dest_scene_desc):
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
try:
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-2.5-flash'); prompt_file = "prompts/transition_decision_prompt.txt"
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
continuity_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=midpoint_scene_description, destination_scene_description=dest_scene_desc)
mem_img = Image.open(memory_media_path) if isinstance(memory_media_path, str) else memory_media_path
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path)
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, continuity_prompt]
response = model.generate_content(model_contents)
decision_data = robust_json_parser(response.text)
if "transition_type" not in decision_data or "motion_prompt" not in decision_data: raise ValueError("A resposta da IA não contém as chaves 'transition_type' ou 'motion_prompt'.")
return decision_data
except Exception as e: raise gr.Error(f"O Diretor de Continuidade (IA) falhou: {e}. Resposta: {getattr(e, 'text', str(e))}")
# ======================================================================================
# SEÇÃO 3: LÓGICA DE PRODUÇÃO COM FILAS ASSÍNCRONAS
# ======================================================================================
def generation_worker(
tasks_list, upscale_queue, progress,
prompt_geral, scene_storyboard, seed, cfg,
video_total_frames_ltx, video_fps, num_inference_steps, use_attention_slicing,
decode_timestep, image_cond_noise_scale, fragment_duration_frames, eco_video_frames,
mid_cond_strength, dest_cond_strength, low_res_width, low_res_height
):
kinetic_memory_path = None
story_history = ""
total_tasks = len(tasks_list)
for i, task_info in enumerate(tasks_list):
fragment_num = i + 1
progress(i / total_tasks, desc=f"Decidindo/Gerando Low-Res {fragment_num}/{total_tasks}...")
start_path = task_info['start_path']
destination_path = task_info['destination_path']
if i == 0:
dest_scene_desc = scene_storyboard[i]
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, video_total_frames_ltx - 1, dest_cond_strength)]
transition_type = "continuous"
else:
path_path = start_path
path_scene_desc = scene_storyboard[i-1]
dest_scene_desc = scene_storyboard[i]
decision_data = get_transition_decision(prompt_geral, story_history, kinetic_memory_path, path_path, destination_path, midpoint_scene_description=path_scene_desc, dest_scene_desc=dest_scene_desc)
transition_type = decision_data["transition_type"]
current_motion_prompt = decision_data["motion_prompt"]
mid_cond_frame = int(video_total_frames_ltx - fragment_duration_frames + eco_video_frames)
conditioning_items_data = [(kinetic_memory_path, 0, 1.0), (path_path, mid_cond_frame, mid_cond_strength), (destination_path, video_total_frames_ltx - 1, dest_cond_strength)]
story_history += f"\n- Ato {fragment_num}: {current_motion_prompt}"
log_message(f"--- Gerando Fragmento {fragment_num} ---")
log_message(f" - Decisão: {transition_type.upper()}")
log_message(f" - Prompt de Movimento: {current_motion_prompt}")
output_path_low_res = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_lowres_{transition_type}.mp4")
_, _ = ltx_manager_singleton.generate_video_fragment(
motion_prompt=current_motion_prompt, conditioning_items_data=conditioning_items_data,
width=low_res_width, height=low_res_height, seed=seed, cfg=cfg,
video_total_frames=video_total_frames_ltx, video_fps=video_fps,
num_inference_steps=num_inference_steps, use_attention_slicing=use_attention_slicing,
decode_timestep=decode_timestep, image_cond_noise_scale=image_cond_noise_scale,
current_fragment_index=fragment_num, output_path=output_path_low_res, progress=progress
)
upscale_task = {"input_path": output_path_low_res, "output_path": output_path_low_res.replace("_lowres_", "_highres_"), "video_fps": video_fps}
upscale_queue.put(upscale_task)
is_last_fragment = (i == total_tasks - 1)
if not is_last_fragment and transition_type != "cut":
trimmed_fragment_path = output_path_low_res.replace(".mp4", "_trimmed.mp4")
trim_video_to_frames(output_path_low_res, trimmed_fragment_path, int(fragment_duration_frames))
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4")
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames))
log_message(f" - Eco cinético criado: {os.path.basename(kinetic_memory_path)}")
else:
kinetic_memory_path = None
def upscaling_worker(upscale_queue, final_results_list):
while True:
task = upscale_queue.get()
if task is None:
upscale_queue.task_done()
break
try:
log_message(f" - Upscaler iniciando trabalho em: {os.path.basename(task['input_path'])}")
upscaled_path = ltx_upscaler_manager_singleton.upscale_video_fragment(
video_path_low_res=task['input_path'], output_path=task['output_path'], video_fps=task['video_fps']
)
final_results_list.append(upscaled_path)
log_message(f" - Upscale concluído para: {os.path.basename(upscaled_path)}")
except Exception as e:
log_message(f"!!!! ERRO no worker de upscale: {e} !!!!")
traceback.print_exc(file=sys.stdout)
finally:
upscale_queue.task_done()
def run_video_production(
video_resolution,
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
fragment_duration_frames, mid_cond_strength, dest_cond_strength, num_inference_steps,
decode_timestep, image_cond_noise_scale,
prompt_geral, keyframe_images_state, scene_storyboard, cfg,
progress=gr.Progress()
):
try:
high_res_width, high_res_height = video_resolution, video_resolution
low_res_scale = 2
low_res_width = (high_res_width // low_res_scale // 8) * 8
low_res_height = (high_res_height // low_res_scale // 8) * 8
valid_keyframes = [p for p in keyframe_images_state if p is not None and os.path.exists(p)]
video_total_frames_user = int(video_duration_seconds * video_fps)
video_total_frames_ltx = int(round((float(video_total_frames_user) - 1.0) / 8.0) * 8 + 1)
if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("São necessários pelo menos 2 keyframes válidos para produzir uma transição.")
log_message(f"\n--- FASE 3: Iniciando Pipeline de Produção Assíncrona ---")
seed = int(time.time())
num_transitions = len(valid_keyframes) - 1
generation_tasks = []
for i in range(num_transitions):
task_info = {"start_path": valid_keyframes[i], "destination_path": valid_keyframes[i+1]}
generation_tasks.append(task_info)
log_message("\nTodas as tarefas de geração foram planejadas. Iniciando workers...")
upscaling_queue = Queue()
final_results_high_res = []
worker_args = (
generation_tasks, upscaling_queue, progress,
prompt_geral, scene_storyboard, seed, cfg,
video_total_frames_ltx, video_fps, num_inference_steps, use_attention_slicing,
decode_timestep, image_cond_noise_scale, fragment_duration_frames, eco_video_frames,
mid_cond_strength, dest_cond_strength, low_res_width, low_res_height
)
gen_worker_thread = threading.Thread(target=generation_worker, args=worker_args)
upscale_worker_thread = threading.Thread(target=upscaling_worker, args=(upscaling_queue, final_results_high_res))
gen_worker_thread.start()
upscale_worker_thread.start()
gen_worker_thread.join()
upscaling_queue.put(None)
upscale_worker_thread.join()
progress(1.0, desc="Produção e upscaling concluídos.")
log_message("\nTodos os fragmentos foram processados.")
return (
sorted(final_results_high_res),
sorted(final_results_high_res),
fragment_duration_frames,
eco_video_frames
)
except Exception as e:
tb_str = traceback.format_exc()
log_message(f"!!!! ERRO CRÍTICO NA PRODUÇÃO DE VÍDEO !!!!\n{tb_str}")
raise gr.Error(f"A Produção de Vídeo (LTX) falhou: {e}")
# ======================================================================================
# SEÇÃO 4: UI e Lógica de Conexão
# ======================================================================================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# NOVIM-13.1 (Painel de Controle do Diretor)\n*Arquitetura ADUC-SDR com Pipeline Assíncrono*")
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
scene_storyboard_state = gr.State([])
keyframe_images_state = gr.State([])
fragment_list_state = gr.State([])
prompt_geral_state = gr.State("")
processed_ref_paths_state = gr.State([])
fragment_duration_state = gr.State()
eco_frames_state = gr.State()
gr.Markdown("## CONFIGURAÇÕES GLOBAIS DE RESOLUÇÃO")
with gr.Row():
video_resolution_selector = gr.Radio([512, 720, 1024], value=1024, label="Resolução Final do Vídeo (px)")
keyframe_resolution_selector = gr.Radio([512, 720, 1024], value=512, label="Resolução dos Keyframes (px)")
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
num_fragments_input = gr.Slider(2, 50, 4, step=1, label="Nº de Keyframes a Gerar")
reference_gallery = gr.Gallery(label="Imagens de Referência (A primeira é a principal)", type="filepath", columns=4, rows=1, object_fit="contain", height="auto")
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
gr.Markdown("--- \n ## ETAPA 2 & 3: COMPOSIÇÃO E PRODUÇÃO")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("Clique no botão para compor os keyframes e iniciar a produção de vídeo automaticamente.")
photographer_button = gr.Button("▶️ Compor Keyframes e Produzir Vídeo", variant="primary")
with gr.Accordion("Controles Avançados de Produção", open=False):
cfg_slider = gr.Slider(0.5, 10.0, 1.0, step=0.1, label="CFG (Guidance Scale)")
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (s)", minimum=2.0, maximum=10.0, value=6.0, step=0.5)
video_fps_radio = gr.Radio(choices=[8, 16, 24, 32], value=24, label="FPS do Vídeo")
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência (Low-Res)", minimum=10, maximum=50, value=28, step=1)
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True)
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Eco + Déjà Vu)")
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (% da Geração Bruta)", minimum=1, maximum=100, value=75, step=1)
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1)
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05)
dest_cond_strength_slider = gr.Slider(label="Força do 'Destino'", minimum=0.1, maximum=1.0, value=1.0, step=0.05)
gr.Markdown("---"); gr.Markdown("#### Controles do VAE (Avançado)")
decode_timestep_slider = gr.Slider(label="VAE Decode Timestep", minimum=0.0, maximum=0.2, value=0.05, step=0.005)
image_cond_noise_scale_slider = gr.Slider(label="VAE Image Cond Noise Scale", minimum=0.0, maximum=0.1, value=0.025, step=0.005)
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Keyframes Gerados"):
keyframe_gallery_output = gr.Gallery(label="Galeria de Keyframes", object_fit="contain", height="auto", type="filepath", interactive=False)
with gr.TabItem("Fragmentos de Vídeo (High-Res)"):
video_gallery_output = gr.Gallery(label="Galeria de Fragmentos", object_fit="contain", height="auto", type="video")
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Montagem Final)")
with gr.Row():
with gr.Column():
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
final_video_output = gr.Video(label="A Obra-Prima Final")
with gr.Accordion("Console de Logs (Diário de Bordo)", open=True):
with gr.Row():
console_logs = gr.Textbox(
label="Logs da Execução",
lines=15,
autoscroll=True,
interactive=False,
show_copy_button=True,
scale=10
)
refresh_log_button = gr.Button("🔄 Atualizar", scale=1)
gr.Markdown(
"""
---
### A Arquitetura: ADUC-SDR com Pipeline Assíncrono
**ADUC (Arquitetura de Unificação Compositiva):** O sistema usa uma equipe de IAs especializadas. Um **Roteirista** cria a história. Um **Diretor de Cena** compõe cada keyframe. Um **Compositor** (`FluxKontext`) cria as imagens.
**SDR (Escala Dinâmica e Resiliente):** A produção opera como uma linha de montagem com trabalhadores (pools de GPU) independentes e filas de trabalho. O **Gerador** (`cuda:2`/`cuda:3`) produz um fragmento em baixa resolução e o coloca na fila do **Upscaler**. O Upscaler (`cuda:0`/`cuda:1`) pega o trabalho da fila e o refina para alta resolução, enquanto o Gerador já está produzindo o próximo fragmento. Isso garante que todas as GPUs estejam trabalhando em paralelo para máxima eficiência.
"""
)
# --- Lógica de Conexão dos Componentes ---
refresh_log_button.click(fn=get_console_logs, inputs=None, outputs=console_logs)
def process_and_run_storyboard(num_fragments, prompt, gallery_files, keyframe_resolution):
clear_logs()
if not gallery_files:
raise gr.Error("Por favor, suba pelo menos uma imagem de referência na galeria.")
raw_paths = [item[0] for item in gallery_files]
processed_paths = []
for i, path in enumerate(raw_paths):
filename = f"processed_ref_{i}_{keyframe_resolution}x{keyframe_resolution}.png"
processed_path = process_image_to_square(path, keyframe_resolution, filename)
processed_paths.append(processed_path)
storyboard = run_storyboard_generation(num_fragments, prompt, processed_paths)
return storyboard, prompt, processed_paths
def run_keyframes_and_video(
# Inputs da Etapa 2
storyboard, fixed_reference_paths, keyframe_resolution, global_prompt,
# Inputs da Etapa 3
video_resolution, video_duration_seconds, video_fps, eco_video_frames,
use_attention_slicing, fragment_duration_percentage, mid_cond_strength,
dest_cond_strength, num_inference_steps, decode_timestep,
image_cond_noise_scale, cfg, progress=gr.Progress()
):
log_message("\n--- INICIANDO ETAPA 2: COMPOSIÇÃO DE KEYFRAMES ---")
keyframe_paths, _ = run_keyframe_generation(
storyboard, fixed_reference_paths, keyframe_resolution, global_prompt, progress
)
log_message("\n--- INICIANDO ETAPA 3: PRODUÇÃO DE VÍDEO ---")
total_frames = video_duration_seconds * video_fps
fragment_duration_in_frames = int(math.floor((fragment_duration_percentage / 100.0) * total_frames))
fragment_duration_in_frames = max(1, fragment_duration_in_frames)
final_gallery, final_state, frag_dur, eco_f = run_video_production(
video_resolution, video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
fragment_duration_in_frames, mid_cond_strength, dest_cond_strength, num_inference_steps,
decode_timestep, image_cond_noise_scale,
global_prompt, keyframe_paths, storyboard, cfg, progress
)
return keyframe_paths, keyframe_paths, final_gallery, final_state, frag_dur, eco_f
director_button.click(
fn=process_and_run_storyboard,
inputs=[num_fragments_input, prompt_input, reference_gallery, keyframe_resolution_selector],
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_paths_state]
).success(fn=lambda s: s, inputs=[scene_storyboard_state], outputs=[storyboard_to_show])
photographer_button.click(
fn=run_keyframes_and_video,
inputs=[
scene_storyboard_state, processed_ref_paths_state, keyframe_resolution_selector, prompt_geral_state,
video_resolution_selector, video_duration_slider, video_fps_radio, eco_frames_slider, slicing_checkbox,
fragment_duration_slider, mid_cond_strength_slider, dest_cond_strength_slider, num_inference_steps_slider,
decode_timestep_slider, image_cond_noise_scale_slider, cfg_slider
],
outputs=[
keyframe_gallery_output,
keyframe_images_state,
video_gallery_output,
fragment_list_state,
fragment_duration_state,
eco_frames_state
]
)
editor_button.click(
fn=concatenate_final_video,
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state],
outputs=[final_video_output]
)
if __name__ == "__main__":
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
demo.queue().launch(server_name="0.0.0.0", share=True) |