File size: 20,387 Bytes
b1126ac
f8aad81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1126ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#--- START OF MODIFIED FILE app_fluxContext_Ltx/ltx_video/models/transformers/transformer3d.py ---
# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union
import os
import json
import glob
from pathlib import Path

import torch
import numpy as np
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import PixArtAlphaTextProjection
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils import logging
from torch import nn
from safetensors import safe_open


from ltx_video.models.transformers.attention import BasicTransformerBlock
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

from ltx_video.utils.diffusers_config_mapping import (
    diffusers_and_ours_config_mapping,
    make_hashable_key,
    TRANSFORMER_KEYS_RENAME_DICT,
)


logger = logging.get_logger(__name__)


@dataclass
class Transformer3DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: torch.FloatTensor


class Transformer3DModel(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        num_vector_embeds: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        double_self_attention: bool = False,
        upcast_attention: bool = False,
        adaptive_norm: str = "single_scale_shift",  # 'single_scale_shift' or 'single_scale'
        standardization_norm: str = "layer_norm",  # 'layer_norm' or 'rms_norm'
        norm_elementwise_affine: bool = True,
        norm_eps: float = 1e-5,
        attention_type: str = "default",
        caption_channels: int = None,
        use_tpu_flash_attention: bool = False,  # if True uses the TPU attention offload ('flash attention')
        qk_norm: Optional[str] = None,
        positional_embedding_type: str = "rope",
        positional_embedding_theta: Optional[float] = None,
        positional_embedding_max_pos: Optional[List[int]] = None,
        timestep_scale_multiplier: Optional[float] = None,
        causal_temporal_positioning: bool = False,  # For backward compatibility, will be deprecated
    ):
        super().__init__()
        self.use_tpu_flash_attention = (
            use_tpu_flash_attention  # FIXME: push config down to the attention modules
        )
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim
        self.inner_dim = inner_dim
        self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
        self.positional_embedding_type = positional_embedding_type
        self.positional_embedding_theta = positional_embedding_theta
        self.positional_embedding_max_pos = positional_embedding_max_pos
        self.use_rope = self.positional_embedding_type == "rope"
        self.timestep_scale_multiplier = timestep_scale_multiplier

        if self.positional_embedding_type == "absolute":
            raise ValueError("Absolute positional embedding is no longer supported")
        elif self.positional_embedding_type == "rope":
            if positional_embedding_theta is None:
                raise ValueError(
                    "If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
                )
            if positional_embedding_max_pos is None:
                raise ValueError(
                    "If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
                )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    double_self_attention=double_self_attention,
                    upcast_attention=upcast_attention,
                    adaptive_norm=adaptive_norm,
                    standardization_norm=standardization_norm,
                    norm_elementwise_affine=norm_elementwise_affine,
                    norm_eps=norm_eps,
                    attention_type=attention_type,
                    use_tpu_flash_attention=use_tpu_flash_attention,
                    qk_norm=qk_norm,
                    use_rope=self.use_rope,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
        self.scale_shift_table = nn.Parameter(
            torch.randn(2, inner_dim) / inner_dim**0.5
        )
        self.proj_out = nn.Linear(inner_dim, self.out_channels)

        self.adaln_single = AdaLayerNormSingle(
            inner_dim, use_additional_conditions=False
        )
        if adaptive_norm == "single_scale":
            self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)

        self.caption_projection = None
        if caption_channels is not None:
            self.caption_projection = PixArtAlphaTextProjection(
                in_features=caption_channels, hidden_size=inner_dim
            )

        self.gradient_checkpointing = False

    def set_use_tpu_flash_attention(self):
        r"""
        Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
        attention kernel.
        """
        logger.info("ENABLE TPU FLASH ATTENTION -> TRUE")
        self.use_tpu_flash_attention = True
        # push config down to the attention modules
        for block in self.transformer_blocks:
            block.set_use_tpu_flash_attention()

    def create_skip_layer_mask(
        self,
        batch_size: int,
        num_conds: int,
        ptb_index: int,
        skip_block_list: Optional[List[int]] = None,
    ):
        if skip_block_list is None or len(skip_block_list) == 0:
            return None
        num_layers = len(self.transformer_blocks)
        mask = torch.ones(
            (num_layers, batch_size * num_conds), device=self.device, dtype=self.dtype
        )
        for block_idx in skip_block_list:
            mask[block_idx, ptb_index::num_conds] = 0
        return mask

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def get_fractional_positions(self, indices_grid):
        fractional_positions = torch.stack(
            [
                indices_grid[:, i] / self.positional_embedding_max_pos[i]
                for i in range(3)
            ],
            dim=-1,
        )
        return fractional_positions

    def precompute_freqs_cis(self, indices_grid, spacing="exp"):
        dtype = torch.float32  # We need full precision in the freqs_cis computation.
        dim = self.inner_dim
        theta = self.positional_embedding_theta

        fractional_positions = self.get_fractional_positions(indices_grid)

        start = 1
        end = theta
        device = fractional_positions.device
        if spacing == "exp":
            indices = theta ** (
                torch.linspace(
                    math.log(start, theta),
                    math.log(end, theta),
                    dim // 6,
                    device=device,
                    dtype=dtype,
                )
            )
            indices = indices.to(dtype=dtype)
        elif spacing == "exp_2":
            indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
            indices = indices.to(dtype=dtype)
        elif spacing == "linear":
            indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
        elif spacing == "sqrt":
            indices = torch.linspace(
                start**2, end**2, dim // 6, device=device, dtype=dtype
            ).sqrt()

        indices = indices * math.pi / 2

        if spacing == "exp_2":
            freqs = (
                (indices * fractional_positions.unsqueeze(-1))
                .transpose(-1, -2)
                .flatten(2)
            )
        else:
            freqs = (
                (indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
                .transpose(-1, -2)
                .flatten(2)
            )

        cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
        sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
        if dim % 6 != 0:
            cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
            sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
            cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
            sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
        return cos_freq.to(self.dtype), sin_freq.to(self.dtype)

    def load_state_dict(
        self,
        state_dict: Dict,
        *args,
        **kwargs,
    ):
        if any([key.startswith("model.diffusion_model.") for key in state_dict.keys()]):
            state_dict = {
                key.replace("model.diffusion_model.", ""): value
                for key, value in state_dict.items()
                if key.startswith("model.diffusion_model.")
            }
        super().load_state_dict(state_dict, *args, **kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_path: Optional[Union[str, os.PathLike]],
        *args,
        **kwargs,
    ):
        pretrained_model_path = Path(pretrained_model_path)
        if pretrained_model_path.is_dir():
            config_path = pretrained_model_path / "transformer" / "config.json"
            with open(config_path, "r") as f:
                config = make_hashable_key(json.load(f))

            assert config in diffusers_and_ours_config_mapping, (
                "Provided diffusers checkpoint config for transformer is not suppported. "
                "We only support diffusers configs found in Lightricks/LTX-Video."
            )

            config = diffusers_and_ours_config_mapping[config]
            state_dict = {}
            ckpt_paths = (
                pretrained_model_path
                / "transformer"
                / "diffusion_pytorch_model*.safetensors"
            )
            dict_list = glob.glob(str(ckpt_paths))
            for dict_path in dict_list:
                part_dict = {}
                with safe_open(dict_path, framework="pt", device="cpu") as f:
                    for k in f.keys():
                        part_dict[k] = f.get_tensor(k)
                state_dict.update(part_dict)

            for key in list(state_dict.keys()):
                new_key = key
                for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
                    new_key = new_key.replace(replace_key, rename_key)
                state_dict[new_key] = state_dict.pop(key)

            with torch.device("meta"):
                transformer = cls.from_config(config)
            transformer.load_state_dict(state_dict, assign=True, strict=True)
        elif pretrained_model_path.is_file() and str(pretrained_model_path).endswith(
            ".safetensors"
        ):
            comfy_single_file_state_dict = {}
            with safe_open(pretrained_model_path, framework="pt", device="cpu") as f:
                metadata = f.metadata()
                for k in f.keys():
                    comfy_single_file_state_dict[k] = f.get_tensor(k)
            configs = json.loads(metadata["config"])
            transformer_config = configs["transformer"]
            with torch.device("meta"):
                transformer = Transformer3DModel.from_config(transformer_config)
            transformer.load_state_dict(comfy_single_file_state_dict, assign=True)
        return transformer

    def forward(
        self,
        hidden_states: torch.Tensor,
        indices_grid: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        skip_layer_mask: Optional[torch.Tensor] = None,
        skip_layer_strategy: Optional[SkipLayerStrategy] = None,
        return_dict: bool = True,
    ):
        if not self.use_tpu_flash_attention:
            if attention_mask is not None and attention_mask.ndim == 2:
                attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
                attention_mask = attention_mask.unsqueeze(1)

            if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
                encoder_attention_mask = (
                    1 - encoder_attention_mask.to(hidden_states.dtype)
                ) * -10000.0
                encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        hidden_states = self.patchify_proj(hidden_states)

        if self.timestep_scale_multiplier:
            timestep = self.timestep_scale_multiplier * timestep

        freqs_cis = self.precompute_freqs_cis(indices_grid)

        batch_size = hidden_states.shape[0]
        timestep, embedded_timestep = self.adaln_single(
            timestep.flatten(),
            {"resolution": None, "aspect_ratio": None},
            batch_size=batch_size,
            hidden_dtype=hidden_states.dtype,
        )
        timestep = timestep.view(batch_size, -1, timestep.shape[-1])
        embedded_timestep = embedded_timestep.view(
            batch_size, -1, embedded_timestep.shape[-1]
        )
        
        if self.caption_projection is not None:
            batch_size = hidden_states.shape[0]
            encoder_hidden_states = self.caption_projection(encoder_hidden_states)
            encoder_hidden_states = encoder_hidden_states.view(
                batch_size, -1, hidden_states.shape[-1]
            )

        # TeaCache Integration
        if hasattr(self, 'enable_teacache') and self.enable_teacache:
            ori_hidden_states = hidden_states.clone()
            temb_ = embedded_timestep.clone()
            inp = self.transformer_blocks[0].norm1(hidden_states.clone())
            
            first_block = self.transformer_blocks[0]
            modulated_inp = inp
            if first_block.adaptive_norm in ["single_scale_shift", "single_scale"]:
                num_ada_params = first_block.scale_shift_table.shape[0]
                ada_values = first_block.scale_shift_table[None, None] + temb_.reshape(
                    batch_size, temb_.shape[1], num_ada_params, -1
                )
                if first_block.adaptive_norm == "single_scale_shift":
                    shift_msa, scale_msa, _, _, _, _ = ada_values.unbind(dim=2)
                    modulated_inp = inp * (1 + scale_msa) + shift_msa
                else:
                    scale_msa, _, _, _ = ada_values.unbind(dim=2)
                    modulated_inp = inp * (1 + scale_msa)

            should_calc = False
            if self.cnt == 0 or self.cnt == self.num_steps - 1 or self.previous_modulated_input is None:
                should_calc = True
                self.accumulated_rel_l1_distance = 0
            else:
                coefficients = [2.14700694e+01, -1.28016453e+01,  2.31279151e+00,  7.92487521e-01, 9.69274326e-03]
                rescale_func = np.poly1d(coefficients)
                rel_l1_dist = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
                self.accumulated_rel_l1_distance += rescale_func(rel_l1_dist)
                
                if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
                    should_calc = False
                else:
                    should_calc = True
                    self.accumulated_rel_l1_distance = 0
            
            self.previous_modulated_input = modulated_inp
            self.cnt += 1
            if self.cnt == self.num_steps:
                self.cnt = 0
            
            if not should_calc and self.previous_residual is not None:
                hidden_states = ori_hidden_states + self.previous_residual
            else:
                # Execute original logic if cache is missed
                temp_hidden_states = hidden_states
                for block_idx, block in enumerate(self.transformer_blocks):
                    temp_hidden_states = block(
                        temp_hidden_states,
                        freqs_cis=freqs_cis,
                        attention_mask=attention_mask,
                        encoder_hidden_states=encoder_hidden_states,
                        encoder_attention_mask=encoder_attention_mask,
                        timestep=timestep,
                        cross_attention_kwargs=cross_attention_kwargs,
                        class_labels=class_labels,
                        skip_layer_mask=(skip_layer_mask[block_idx] if skip_layer_mask is not None else None),
                        skip_layer_strategy=skip_layer_strategy,
                    )
                self.previous_residual = temp_hidden_states - ori_hidden_states
                hidden_states = temp_hidden_states
        else:
            # Original path if TeaCache is disabled
            for block_idx, block in enumerate(self.transformer_blocks):
                hidden_states = block(
                    hidden_states,
                    freqs_cis=freqs_cis,
                    attention_mask=attention_mask,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    timestep=timestep,
                    cross_attention_kwargs=cross_attention_kwargs,
                    class_labels=class_labels,
                    skip_layer_mask=(skip_layer_mask[block_idx] if skip_layer_mask is not None else None),
                    skip_layer_strategy=skip_layer_strategy,
                )

        # Final modulation and output
        scale_shift_values = (self.scale_shift_table[None, None] + embedded_timestep[:, :, None])
        shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
        hidden_states = self.norm_out(hidden_states)
        hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.proj_out(hidden_states)

        if not return_dict:
            return (hidden_states,)

        return Transformer3DModelOutput(sample=hidden_states)
#--- END OF MODIFIED FILE app_fluxContext_Ltx/ltx_video/models/transformers/transformer3d.py ---