File size: 9,677 Bytes
708d36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
from diffusers import LTXPipeline
from diffusers.models.transformers import LTXVideoTransformer3DModel
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils import export_to_video
from typing import Any, Dict, Optional, Tuple
import numpy as np


def teacache_forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_attention_mask: torch.Tensor,
        num_frames: int,
        height: int,
        width: int,
        rope_interpolation_scale: Optional[Tuple[float, float, float]] = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
    ) -> torch.Tensor:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        batch_size = hidden_states.size(0)
        hidden_states = self.proj_in(hidden_states)

        temb, embedded_timestep = self.time_embed(
            timestep.flatten(),
            batch_size=batch_size,
            hidden_dtype=hidden_states.dtype,
        )

        temb = temb.view(batch_size, -1, temb.size(-1))
        embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1))

        encoder_hidden_states = self.caption_projection(encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1))

        if self.enable_teacache:
            inp = hidden_states.clone()
            temb_ = temb.clone()
            inp = self.transformer_blocks[0].norm1(inp)
            num_ada_params = self.transformer_blocks[0].scale_shift_table.shape[0]
            ada_values = self.transformer_blocks[0].scale_shift_table[None, None] + temb_.reshape(batch_size, temb_.size(1), num_ada_params, -1)
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
            modulated_inp = inp * (1 + scale_msa) + shift_msa
            if self.cnt == 0 or self.cnt == self.num_steps-1:
                should_calc = True
                self.accumulated_rel_l1_distance = 0
            else: 
                coefficients = [2.14700694e+01, -1.28016453e+01,  2.31279151e+00,  7.92487521e-01, 9.69274326e-03]
                rescale_func = np.poly1d(coefficients)
                self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
                if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
                    should_calc = False
                else:
                    should_calc = True
                    self.accumulated_rel_l1_distance = 0
            self.previous_modulated_input = modulated_inp  
            self.cnt += 1
            if self.cnt == self.num_steps:
                self.cnt = 0         
        
        if self.enable_teacache:
            if not should_calc:
                hidden_states += self.previous_residual
            else:
                ori_hidden_states = hidden_states.clone()
                for block in self.transformer_blocks:
                    if torch.is_grad_enabled() and self.gradient_checkpointing:

                        def create_custom_forward(module, return_dict=None):
                            def custom_forward(*inputs):
                                if return_dict is not None:
                                    return module(*inputs, return_dict=return_dict)
                                else:
                                    return module(*inputs)

                            return custom_forward

                        ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                        hidden_states = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(block),
                            hidden_states,
                            encoder_hidden_states,
                            temb,
                            image_rotary_emb,
                            encoder_attention_mask,
                            **ckpt_kwargs,
                        )
                    else:
                        hidden_states = block(
                            hidden_states=hidden_states,
                            encoder_hidden_states=encoder_hidden_states,
                            temb=temb,
                            image_rotary_emb=image_rotary_emb,
                            encoder_attention_mask=encoder_attention_mask,
                        )

                scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
                shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]

                hidden_states = self.norm_out(hidden_states)
                hidden_states = hidden_states * (1 + scale) + shift
                self.previous_residual = hidden_states - ori_hidden_states
        else:
            for block in self.transformer_blocks:
                if torch.is_grad_enabled() and self.gradient_checkpointing:

                    def create_custom_forward(module, return_dict=None):
                        def custom_forward(*inputs):
                            if return_dict is not None:
                                return module(*inputs, return_dict=return_dict)
                            else:
                                return module(*inputs)

                        return custom_forward

                    ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        hidden_states,
                        encoder_hidden_states,
                        temb,
                        image_rotary_emb,
                        encoder_attention_mask,
                        **ckpt_kwargs,
                    )
                else:
                    hidden_states = block(
                        hidden_states=hidden_states,
                        encoder_hidden_states=encoder_hidden_states,
                        temb=temb,
                        image_rotary_emb=image_rotary_emb,
                        encoder_attention_mask=encoder_attention_mask,
                    )

            scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
            shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]

            hidden_states = self.norm_out(hidden_states)
            hidden_states = hidden_states * (1 + scale) + shift


        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)

LTXVideoTransformer3DModel.forward = teacache_forward
prompt = "A clear, turquoise river flows through a rocky canyon, cascading over a small waterfall and forming a pool of water at the bottom.The river is the main focus of the scene, with its clear water reflecting the surrounding trees and rocks. The canyon walls are steep and rocky, with some vegetation growing on them. The trees are mostly pine trees, with their green needles contrasting with the brown and gray rocks. The overall tone of the scene is one of peace and tranquility."
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted"
seed = 42
num_inference_steps = 50
pipe = LTXPipeline.from_pretrained("a-r-r-o-w/LTX-Video-0.9.1-diffusers", torch_dtype=torch.bfloat16)

# TeaCache
pipe.transformer.__class__.enable_teacache = True
pipe.transformer.__class__.cnt = 0
pipe.transformer.__class__.num_steps = num_inference_steps
pipe.transformer.__class__.rel_l1_thresh = 0.05 # 0.03 for 1.6x speedup, 0.05 for 2.1x speedup
pipe.transformer.__class__.accumulated_rel_l1_distance = 0
pipe.transformer.__class__.previous_modulated_input = None
pipe.transformer.__class__.previous_residual = None

pipe.to("cuda")
video = pipe(
    prompt=prompt,
    negative_prompt=negative_prompt,
    width=768,
    height=512,
    num_frames=161,
    decode_timestep=0.03,
    decode_noise_scale=0.025,
    num_inference_steps=num_inference_steps,
    generator=torch.Generator("cuda").manual_seed(seed)
).frames[0]
export_to_video(video, "teacache_ltx_{}.mp4".format(prompt[:50]), fps=24)