Aduc-Sdr_Novim / flux_kontext_helpers.py
CARLEXsX's picture
Update flux_kontext_helpers.py
a08fa56 verified
#--- START OF MODIFIED FILE app_fluxContext_Ltx/flux_kontext_helpers.py ---
# flux_kontext_helpers.py
# Módulo de serviço para o FluxKontext, com gestão de memória e revezamento de GPU.
# Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3.
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
import torch
from PIL import Image
import gc
from diffusers import FluxKontextPipeline
import huggingface_hub
import os
import threading
class FluxWorker:
"""
Representa uma única instância do pipeline FluxKontext, associada a uma GPU específica.
O pipeline é carregado na CPU por padrão e movido para a GPU sob demanda.
"""
def __init__(self, device_id='cuda:0'):
self.cpu_device = torch.device('cpu')
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu')
print(f"FLUX Worker: Inicializando para o dispositivo {self.device} (carregando na CPU)...")
self.pipe = None
self._load_pipe_to_cpu()
def _load_pipe_to_cpu(self):
if self.pipe is None:
print("FLUX Worker: Carregando modelo FluxKontext para a CPU...")
self.pipe = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
).to(self.cpu_device)
print("FLUX Worker: Modelo FluxKontext pronto (na CPU).")
def to_gpu(self):
"""Move o pipeline para a GPU designada."""
if self.device.type == 'cpu': return
print(f"FLUX Worker: Movendo modelo para {self.device}...")
self.pipe.to(self.device)
print(f"FLUX Worker: Modelo na GPU {self.device}.")
def to_cpu(self):
"""Move o pipeline de volta para a CPU e limpa a memória da GPU."""
if self.device.type == 'cpu': return
print(f"FLUX Worker: Descarregando modelo da GPU {self.device}...")
self.pipe.to(self.cpu_device)
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"FLUX Worker: GPU {self.device} limpa.")
def _concatenate_images(self, images, direction="horizontal"):
if not images: return None
valid_images = [img.convert("RGB") for img in images if img is not None]
if not valid_images: return None
if len(valid_images) == 1: return valid_images[0]
if direction == "horizontal":
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
concatenated = Image.new('RGB', (total_width, max_height))
x_offset = 0
for img in valid_images:
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else:
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
concatenated = Image.new('RGB', (max_width, total_height))
y_offset = 0
for img in valid_images:
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
@torch.inference_mode()
def generate_image_internal(self, reference_images, prompt, width, height, seed=42):
"""A lógica real da geração de imagem, que espera estar na GPU."""
concatenated_image = self._concatenate_images(reference_images, "horizontal")
if concatenated_image is None:
raise ValueError("Nenhuma imagem de referência válida foi fornecida.")
image = self.pipe(
image=concatenated_image,
prompt=prompt,
guidance_scale=2.5,
width=width,
height=height,
generator=torch.Generator(device="cpu").manual_seed(seed)
).images[0]
return image
class FluxPoolManager:
"""
Gerencia um pool de FluxWorkers, orquestrando um revezamento entre GPUs
para permitir que a limpeza de uma GPU ocorra em paralelo com a computação em outra.
"""
def __init__(self, device_ids=['cuda:0', 'cuda:1']):
print(f"FLUX POOL MANAGER: Criando workers para os dispositivos: {device_ids}")
self.workers = [FluxWorker(device_id) for device_id in device_ids]
self.current_worker_index = 0
self.lock = threading.Lock()
self.last_cleanup_thread = None
def _cleanup_worker(self, worker):
"""Função alvo para a thread de limpeza."""
print(f"FLUX CLEANUP THREAD: Iniciando limpeza da GPU {worker.device} em background...")
worker.to_cpu()
print(f"FLUX CLEANUP THREAD: Limpeza da GPU {worker.device} concluída.")
def generate_image(self, reference_images, prompt, width, height, seed=42):
worker_to_use = None
try:
with self.lock:
if self.last_cleanup_thread and self.last_cleanup_thread.is_alive():
print("FLUX POOL MANAGER: Aguardando limpeza da GPU anterior...")
self.last_cleanup_thread.join()
print("FLUX POOL MANAGER: Limpeza anterior concluída.")
worker_to_use = self.workers[self.current_worker_index]
previous_worker_index = (self.current_worker_index - 1 + len(self.workers)) % len(self.workers)
worker_to_cleanup = self.workers[previous_worker_index]
cleanup_thread = threading.Thread(target=self._cleanup_worker, args=(worker_to_cleanup,))
cleanup_thread.start()
self.last_cleanup_thread = cleanup_thread
worker_to_use.to_gpu()
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers)
print(f"FLUX POOL MANAGER: Gerando imagem em {worker_to_use.device}...")
return worker_to_use.generate_image_internal(
reference_images=reference_images,
prompt=prompt,
width=width,
height=height,
seed=seed
)
finally:
# A limpeza do worker_to_use será feita na PRÓXIMA chamada a esta função,
# permitindo que a computação do LTX ocorra em paralelo.
pass
# --- Instância Singleton ---
print("Inicializando o Compositor de Cenas (FluxKontext Pool Manager)...")
hf_token = os.getenv('HF_TOKEN')
if hf_token: huggingface_hub.login(token=hf_token)
# Pool do Flux usa cuda:0 e cuda:1
flux_kontext_singleton = FluxPoolManager(device_ids=['cuda:0', 'cuda:1'])
print("Compositor de Cenas pronto.")
#-- END OF MODIFIED FILE app_fluxContext_Ltx/flux_kontext_helpers.py ---