Spaces:
Sleeping
Sleeping
# ltx_manager_helpers.py | |
# Gerente de Pool de Workers LTX para revezamento assíncrono em múltiplas GPUs. | |
# Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3. | |
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
import torch | |
import gc | |
import os | |
import yaml | |
import numpy as np | |
import imageio | |
from pathlib import Path | |
import huggingface_hub | |
import threading | |
from PIL import Image | |
# Importa as funções e classes necessárias do inference.py | |
from inference import ( | |
create_ltx_video_pipeline, | |
create_latent_upsampler, | |
ConditioningItem, | |
calculate_padding, | |
prepare_conditioning | |
) | |
from ltx_video.pipelines.pipeline_ltx_video import LTXMultiScalePipeline | |
class LtxWorker: | |
""" | |
Representa uma única instância do pipeline LTX, associada a uma GPU específica. | |
O pipeline é carregado na CPU por padrão e movido para a GPU sob demanda. | |
""" | |
def __init__(self, device_id='cuda:0'): | |
self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') | |
print(f"LTX Worker: Inicializando para o dispositivo {self.device} (carregando na CPU)...") | |
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml" | |
with open(config_file_path, "r") as file: | |
self.config = yaml.safe_load(file) | |
LTX_REPO = "Lightricks/LTX-Video" | |
models_dir = "downloaded_models_gradio" | |
model_actual_path = huggingface_hub.hf_hub_download( | |
repo_id=LTX_REPO, | |
filename=self.config["checkpoint_path"], | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
self.pipeline = create_ltx_video_pipeline( | |
ckpt_path=model_actual_path, | |
precision=self.config["precision"], | |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
sampler=self.config["sampler"], | |
device='cpu' | |
) | |
print(f"LTX Worker para {self.device}: Compilando o transformer (isso pode levar um momento)...") | |
self.pipeline.transformer.to(memory_format=torch.channels_last) | |
try: | |
self.pipeline.transformer = torch.compile(self.pipeline.transformer, mode="reduce-overhead", fullgraph=True) | |
print(f"LTX Worker para {self.device}: Transformer compilado com sucesso.") | |
except Exception as e: | |
print(f"AVISO: A compilação do Transformer falhou em {self.device}: {e}. Continuando sem compilação.") | |
self.latent_upsampler = None | |
if self.config.get("pipeline_type") == "multi-scale": | |
print(f"LTX Worker para {self.device}: Carregando Latent Upsampler (Multi-Scale)...") | |
upscaler_path = huggingface_hub.hf_hub_download( | |
repo_id=LTX_REPO, | |
filename=self.config["spatial_upscaler_model_path"], | |
local_dir=models_dir, | |
local_dir_use_symlinks=False | |
) | |
self.latent_upsampler = create_latent_upsampler(upscaler_path, 'cpu') | |
print(f"LTX Worker para {self.device} pronto na CPU.") | |
def to_gpu(self): | |
"""Move o pipeline e o upsampler para a GPU designada.""" | |
if self.device.type == 'cpu': return | |
print(f"LTX Worker: Movendo pipeline para {self.device}...") | |
self.pipeline.to(self.device) | |
if self.latent_upsampler: | |
print(f"LTX Worker: Movendo Latent Upsampler para {self.device}...") | |
self.latent_upsampler.to(self.device) | |
print(f"LTX Worker: Pipeline na GPU {self.device}.") | |
def to_cpu(self): | |
"""Move o pipeline de volta para a CPU e limpa a memória da GPU.""" | |
if self.device.type == 'cpu': return | |
print(f"LTX Worker: Descarregando pipeline da GPU {self.device}...") | |
self.pipeline.to('cpu') | |
if self.latent_upsampler: | |
self.latent_upsampler.to('cpu') | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
print(f"LTX Worker: GPU {self.device} limpa.") | |
def generate_video_fragment_internal(self, **kwargs): | |
"""A lógica real da geração de vídeo, que espera estar na GPU.""" | |
return self.pipeline(**kwargs) | |
class LtxPoolManager: | |
""" | |
Gerencia um pool de LtxWorkers, orquestrando um revezamento entre GPUs | |
para permitir que a limpeza de uma GPU ocorra em paralelo com a computação em outra. | |
""" | |
def __init__(self, device_ids=['cuda:2', 'cuda:3']): | |
print(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}") | |
self.workers = [LtxWorker(device_id) for device_id in device_ids] | |
self.current_worker_index = 0 | |
self.lock = threading.Lock() | |
self.last_cleanup_thread = None | |
def _cleanup_worker(self, worker): | |
"""Função alvo para a thread de limpeza.""" | |
print(f"CLEANUP THREAD: Iniciando limpeza da GPU {worker.device} em background...") | |
worker.to_cpu() | |
print(f"CLEANUP THREAD: Limpeza da GPU {worker.device} concluída.") | |
def generate_video_fragment( | |
self, | |
motion_prompt: str, conditioning_items_data: list, | |
width: int, height: int, seed: int, cfg: float, video_total_frames: int, | |
video_fps: int, num_inference_steps: int, use_attention_slicing: bool, | |
decode_timestep: float, image_cond_noise_scale: float, | |
current_fragment_index: int, output_path: str, progress | |
): | |
worker_to_use = None | |
try: | |
with self.lock: | |
if self.last_cleanup_thread and self.last_cleanup_thread.is_alive(): | |
print("LTX POOL MANAGER: Aguardando limpeza da GPU anterior...") | |
self.last_cleanup_thread.join() | |
worker_to_use = self.workers[self.current_worker_index] | |
previous_worker_index = (self.current_worker_index - 1 + len(self.workers)) % len(self.workers) | |
worker_to_cleanup = self.workers[previous_worker_index] | |
cleanup_thread = threading.Thread(target=self._cleanup_worker, args=(worker_to_cleanup,)) | |
cleanup_thread.start() | |
self.last_cleanup_thread = cleanup_thread | |
worker_to_use.to_gpu() | |
self.current_worker_index = (self.current_worker_index + 1) % len(self.workers) | |
target_device = worker_to_use.device | |
if use_attention_slicing: | |
worker_to_use.pipeline.enable_attention_slicing() | |
media_paths = [item[0] for item in conditioning_items_data] | |
start_frames = [item[1] for item in conditioning_items_data] | |
strengths = [item[2] for item in conditioning_items_data] | |
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 | |
padding_vals = calculate_padding(height, width, padded_h, padded_w) | |
conditioning_items = prepare_conditioning( | |
conditioning_media_paths=media_paths, conditioning_strengths=strengths, | |
conditioning_start_frames=start_frames, height=height, width=width, | |
num_frames=video_total_frames, padding=padding_vals, pipeline=worker_to_use.pipeline, | |
) | |
for item in conditioning_items: | |
item.media_item = item.media_item.to(target_device) | |
kwargs = { | |
"prompt": motion_prompt, | |
"negative_prompt": "blurry, distorted, bad quality, artifacts", | |
"height": padded_h, | |
"width": padded_w, | |
"num_frames": video_total_frames, | |
"frame_rate": video_fps, | |
"generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), | |
"output_type": "pt", | |
"guidance_scale": float(cfg), | |
"conditioning_items": conditioning_items, | |
"decode_timestep": decode_timestep, | |
"decode_noise_scale": worker_to_use.config.get("decode_noise_scale"), | |
"image_cond_noise_scale": image_cond_noise_scale, | |
"stochastic_sampling": worker_to_use.config.get("stochastic_sampling"), | |
"is_video": True, | |
"vae_per_channel_normalize": True, | |
"mixed_precision": (worker_to_use.config.get("precision") == "mixed_precision"), | |
"enhance_prompt": False, | |
} | |
# Verifica se o config do modelo especifica uma lista de timesteps. | |
# Se sim, usa essa lista. Se não, usa o num_inference_steps da UI. | |
first_pass_config = worker_to_use.config.get("first_pass", {}) | |
if "timesteps" in first_pass_config: | |
print("Usando timesteps customizados do arquivo de configuração para o modelo distilled.") | |
kwargs["timesteps"] = first_pass_config["timesteps"] | |
kwargs["num_inference_steps"] = len(first_pass_config["timesteps"]) | |
# Para modelos distilled, a UI de steps é ignorada, mas outros params do config são usados | |
kwargs.update({k: v for k, v in first_pass_config.items() if k != "timesteps"}) | |
else: | |
print(f"Usando num_inference_steps da UI: {num_inference_steps}") | |
kwargs["num_inference_steps"] = int(num_inference_steps) | |
progress(0.1, desc=f"[Câmera LTX em {worker_to_use.device}] Filmando Cena {current_fragment_index}...") | |
result_tensor = worker_to_use.generate_video_fragment_internal(**kwargs).images | |
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals) | |
slice_h = -pad_b if pad_b > 0 else None | |
slice_w = -pad_r if pad_r > 0 else None | |
cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w] | |
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) | |
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer: | |
for frame in video_np: | |
writer.append_data(frame) | |
return output_path, video_total_frames | |
finally: | |
if use_attention_slicing and worker_to_use and worker_to_use.pipeline: | |
worker_to_use.pipeline.disable_attention_slicing() | |
ltx_manager_singleton = LtxPoolManager(device_ids=['cuda:2', 'cuda:3']) |