# ltx_worker_base.py (GPU-C: cuda:2) # Worker para gerar os fragmentos de vídeo em resolução base. # Este arquivo é parte do projeto Euia-AducSdr e está sob a licença AGPL v3. # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos import torch import gc import os import yaml import numpy as np import imageio from pathlib import Path import huggingface_hub from inference import ( create_ltx_video_pipeline, ConditioningItem, calculate_padding, prepare_conditioning ) class LtxGenerator: def __init__(self, device_id='cuda:2'): print(f"WORKER CÂMERA-BASE: Inicializando...") self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') print(f"WORKER CÂMERA-BASE: Usando dispositivo: {self.device}") config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml" with open(config_file_path, "r") as file: self.config = yaml.safe_load(file) LTX_REPO = "Lightricks/LTX-Video" models_dir = "downloaded_models_gradio" Path(models_dir).mkdir(parents=True, exist_ok=True) print("WORKER CÂMERA-BASE: Carregando pipeline LTX na CPU (estado de repouso)...") distilled_model_actual_path = huggingface_hub.hf_hub_download( repo_id=LTX_REPO, filename=self.config["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False ) self.pipeline = create_ltx_video_pipeline( ckpt_path=distilled_model_actual_path, precision=self.config["precision"], text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], sampler=self.config["sampler"], device='cpu' ) print("WORKER CÂMERA-BASE: Pronto (na CPU).") def to_gpu(self): if self.pipeline and torch.cuda.is_available(): print(f"WORKER CÂMERA-BASE: Movendo LTX para {self.device}...") self.pipeline.to(self.device) def to_cpu(self): if self.pipeline: print(f"WORKER CÂMERA-BASE: Descarregando LTX da GPU {self.device}...") self.pipeline.to('cpu') gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() def generate_video_fragment( self, motion_prompt: str, conditioning_items_data: list, width: int, height: int, seed: int, cfg: float, video_total_frames: int, video_fps: int, num_inference_steps: int, use_attention_slicing: bool, current_fragment_index: int, output_path: str, progress ): progress(0.1, desc=f"[Câmera LTX Base] Filmando Cena {current_fragment_index}...") target_device = self.pipeline.device if use_attention_slicing: self.pipeline.enable_attention_slicing() media_paths = [item[0] for item in conditioning_items_data] start_frames = [item[1] for item in conditioning_items_data] strengths = [item[2] for item in conditioning_items_data] padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 padding_vals = calculate_padding(height, width, padded_h, padded_w) conditioning_items = prepare_conditioning( conditioning_media_paths=media_paths, conditioning_strengths=strengths, conditioning_start_frames=start_frames, height=height, width=width, num_frames=video_total_frames, padding=padding_vals, pipeline=self.pipeline, ) for item in conditioning_items: item.media_item = item.media_item.to(target_device) actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1) first_pass_config = self.config.get("first_pass", {}).copy() first_pass_config['num_inference_steps'] = int(num_inference_steps) kwargs = { "prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": self.config.get("decode_timestep"), "decode_noise_scale": self.config.get("decode_noise_scale"), "stochastic_sampling": self.config.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (self.config.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps) } result_tensor = self.pipeline(**kwargs).images pad_l, pad_r, pad_t, pad_b = map(int, padding_vals) slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None cropped_tensor = result_tensor[:, :, :actual_num_frames, pad_t:slice_h, pad_l:slice_w] video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer: for frame in video_np: writer.append_data(frame) if use_attention_slicing and self.pipeline: self.pipeline.disable_attention_slicing() return output_path, actual_num_frames # --- Instância Singleton para o Worker Base --- ltx_base_singleton = LtxGenerator(device_id='cuda:2')