File size: 22,337 Bytes
7253de2
595c733
7253de2
7c0bf42
595c733
 
 
 
7253de2
 
 
7c0bf42
 
 
7253de2
 
 
 
 
5e86423
7253de2
 
 
 
 
 
 
 
 
 
 
 
 
 
595c733
7253de2
3810c19
 
 
 
 
 
 
7253de2
3810c19
7253de2
 
 
3810c19
 
7253de2
7c0bf42
595c733
7c0bf42
 
 
 
595c733
7c0bf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595c733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c0bf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fe1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595c733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7253de2
 
 
7c0bf42
7253de2
 
 
 
 
 
 
 
 
 
 
 
7c0bf42
7253de2
595c733
3810c19
 
7253de2
3810c19
 
 
 
94fe1d2
7c0bf42
 
 
 
 
 
 
 
 
 
 
595c733
7c0bf42
94fe1d2
7c0bf42
595c733
7c0bf42
595c733
7c0bf42
 
 
7253de2
 
7c0bf42
 
 
7253de2
 
 
5e86423
 
7253de2
 
 
5e86423
 
7253de2
 
5e86423
 
7253de2
 
 
 
 
 
 
 
7c0bf42
7253de2
 
 
 
 
 
 
 
5e86423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fe1d2
7253de2
7c0bf42
 
 
94fe1d2
 
7c0bf42
 
 
7253de2
94fe1d2
 
 
7253de2
94fe1d2
 
 
 
 
 
 
 
 
 
 
7c0bf42
 
94fe1d2
7253de2
 
94fe1d2
7253de2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
import os
from typing import Annotated, List, Optional, Dict, Any
from typing_extensions import TypedDict
from pathlib import Path
import numpy as np
from PIL import Image, ImageEnhance, ImageFilter
import base64
import io

from dotenv import load_dotenv
from langchain.tools import tool
from langchain_tavily import TavilySearch
# Import math tools
import cmath  # needed for square_root of negative numbers
from langchain_community.document_loaders import WikipediaLoader
from langchain_core.messages import SystemMessage, BaseMessage, HumanMessage
from langchain_openai import ChatOpenAI
from langgraph.graph import StateGraph, START
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode

# Load environment variables from .env file
load_dotenv()

# Define the state for the agent
class State(TypedDict):
    messages: Annotated[List[BaseMessage], add_messages]

@tool
def wikipedia(query: str) -> str:
    """
    Searches Wikipedia for the given query and returns the content of the top 2 most relevant documents.
    Use this tool to answer questions about historical events, scientific concepts,
    or any other topic that can be found on Wikipedia.
    Sometimes the tavily_search tool is better.
    
    Args:
        query: The search query.
    Returns:
        A dictionary containing the formatted search results.   
    """
    search_docs = WikipediaLoader(query=query, load_max_docs=2, doc_content_chars_max=50000).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ]
    )
    return {"wiki_results": formatted_search_docs}


# -----------------------------------------------------------------------------
# Search Tools
# -----------------------------------------------------------------------------

@tool
def tavily_search(query: str) -> str:
    """If Wikipedia searches fail try this tool to Search the web using Tavily Search API and return a formatted string of the top results."""
    api_key = os.getenv("TAVILY_API_KEY")
    if not api_key:
        return "Error: TAVILY_API_KEY environment variable is not set."

    try:
        search_tool = TavilySearch(api_key=api_key, max_results=5)
        results = search_tool.invoke(query)
    except Exception as exc:
        return f"Error: Tavily search failed: {exc}"

    # LangChain TavilySearch returns list[dict]
    if isinstance(results, list):
        formatted = "\n\n---\n\n".join(
            [f"Title: {r.get('title', '')}\nURL: {r.get('url', '')}\nSnippet: {r.get('snippet', '')}" for r in results]
        )
        return formatted or "No results found."
    return str(results)


# -----------------------------------------------------------------------------
# Serper Search Tool (Google)
# -----------------------------------------------------------------------------
@tool
def serper_search(query: str) -> str:
    """Search the web using the Serper API (Google Search) and return a formatted
    string of the top results."""
    api_key = os.getenv("SERPER_API_KEY")
    if not api_key:
        return "Error: SERPER_API_KEY environment variable is not set."

    import requests
    try:
        resp = requests.post(
            "https://google.serper.dev/search",
            headers={"X-API-KEY": api_key, "Content-Type": "application/json"},
            json={"q": query, "num": 10},  # return up to 10 results, we'll format top 5
            timeout=20,
        )
        resp.raise_for_status()
        data = resp.json()
    except Exception as exc:
        return f"Error: Serper search failed: {exc}"

    results = data.get("organic", [])[:5]
    if not results:
        return "No results found."

    formatted = "\n\n---\n\n".join(
        [f"Title: {r.get('title', '')}\nURL: {r.get('link', '')}\nSnippet: {r.get('snippet', '')}" for r in results]
    )
    return formatted or "No results found."


# -----------------------------------------------------------------------------
# URL Retrieval Tool
# -----------------------------------------------------------------------------

@tool
def open_url(url: str, max_chars: int = 50000) -> str:
    """Download a web page and return its plain-text content (truncated). Supports HTML and other text types.

    Args:
        url: The HTTP/HTTPS URL to fetch.

    Returns:
        Cleaned text or an error string.
    """
    import requests
    from bs4 import BeautifulSoup

    try:
        resp = requests.get(url, timeout=20, headers={"User-Agent": "Mozilla/5.0 (compatible; LangChain-Agent/1.0)"})
        resp.raise_for_status()
        content_type = resp.headers.get("Content-Type", "")

        # If HTML, strip tags; otherwise return raw text
        if "text/html" in content_type:
            soup = BeautifulSoup(resp.text, "html.parser")
            # Remove non-visible elements
            for tag in soup(["script", "style", "noscript"]):
                tag.decompose()
            text = soup.get_text("\n")
        else:
            text = resp.text

        return text.strip()[:max_chars] or "No readable text found."
    except Exception as exc:
        return f"Error fetching {url}: {exc}"


# -----------------------------------------------------------------------------
# Composite web search + retrieval tool
# -----------------------------------------------------------------------------
@tool
def web_lookup(query: str) -> dict:
    """
    Search the web using Tavily and automatically retrieve the plain-text content
    of the top result.

    Args:
        query: Search query.

    Returns:
        Dict containing:
            - top_results: List with one Tavily result dict
            - page_url: URL opened
            - page_content: Cleaned page text (truncated)
            - error: present only if something went wrong
    """
    api_key = os.getenv("TAVILY_API_KEY")
    if not api_key:
        return {"error": "TAVILY_API_KEY environment variable is not set."}

    # Always fetch exactly one result
    num_results = 1
    try:
        search_tool = TavilySearch(api_key=api_key, max_results=num_results)
        raw_results = search_tool.invoke(query)
    except Exception as exc:
        return {"error": f"Tavily search failed: {exc}"}

    # TavilySearch sometimes returns a list of dicts, sometimes a dict with a
    # "results" key – normalise to a list.
    if isinstance(raw_results, list):
        results = raw_results
    elif isinstance(raw_results, dict) and "results" in raw_results:
        results = raw_results["results"]
    else:
        return {"error": f"Unexpected Tavily response: {type(raw_results)}"}

    if not results:
        return {"error": "No Tavily results found."}

    best_url = results[0].get("url") if isinstance(results[0], dict) else None
    if not best_url:
        return {"error": "Top Tavily result had no URL field."}

    # Use open_url default truncation
    page_text = open_url(best_url)
    return {
        "top_results": results,
        "page_url": best_url,
        "page_content": page_text,
    }

# -----------------------------------------------------------------------------
# Multimedia Tools
# -----------------------------------------------------------------------------

@tool
def transcribe_audio(audio_path: str) -> str:
    """Transcribe the supplied audio file to text using the OpenAI Whisper API (``whisper-1``).

    Args:
        audio_path: The path to the audio file to transcribe.

    Returns:
        The transcribed text or an error string.
    """
    if not Path(audio_path).exists():
        return f"Error: Audio file not found at {audio_path}"

    api_key = os.getenv("OPENAI_API_KEY")
    if not api_key:
        return "Error: OPENAI_API_KEY environment variable is not set."

    try:
        from openai import OpenAI  # type: ignore

        client = OpenAI(api_key=api_key)
        with open(audio_path, "rb") as f:
            transcription = client.audio.transcriptions.create(
                model="whisper-1",
                file=f,
            )
        text: str | None = getattr(transcription, "text", None)
        if text:
            return text.strip()
        return "Error: Transcription response did not contain text."
    except Exception as exc:
        return f"Error: OpenAI transcription failed: {exc}"

# -----------------------------------------------------------------------------
# Math Tools
# -----------------------------------------------------------------------------

@tool
def multiply(a: float, b: float) -> float:
    """Multiply two numbers and return the product."""
    return a * b


@tool
def add(a: float, b: float) -> float:
    """Add two numbers and return the sum."""
    return a + b


@tool
def subtract(a: float, b: float) -> float:
    """Subtract the second number from the first and return the result."""
    return a - b


@tool
def divide(a: float, b: float) -> float:
    """Divide the first number by the second and return the quotient.

    Raises:
        ValueError: If b is zero.
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b


@tool
def modulus(a: int, b: int) -> int:
    """Return the modulus of two integers."""
    return a % b


@tool
def power(a: float, b: float) -> float:
    """Return a to the power of b."""
    return a ** b


@tool
def square_root(a: float):
    """Return the square root of a. Supports complex results for negative inputs."""
    if a >= 0:
        return a ** 0.5
    return cmath.sqrt(a)

# -----------------------------------------------------------------------------
# File handling tools
# -----------------------------------------------------------------------------
@tool
def download_file_from_url(url: str, filename: Optional[str] = None) -> str:
    """
    Download a file from a URL and return the local file path.

    Args:
        url: The URL to download the file from.
        filename: The optional name to save the file as. If not provided, it's inferred from the URL.
    """
    import requests
    from pathlib import Path

    # If a filename isn't provided, infer it from the URL.
    if not filename:
        filename = url.split("/")[-1]

    download_dir = Path("downloads")
    download_dir.mkdir(parents=True, exist_ok=True)
    local_path = download_dir / filename

    try:
        resp = requests.get(url, stream=True, timeout=30)
        resp.raise_for_status()
        with open(local_path, 'wb') as f:
            for chunk in resp.iter_content(1024):
                f.write(chunk)
    except Exception as e:
        return f"Error downloading file from {url}: {e}"

    return str(local_path)

@tool
def analyze_csv_file(file_path: str) -> str:
    """
    Read a CSV at file_path and return JSON records.
    """
    import pandas as pd
    from pathlib import Path

    if not Path(file_path).exists():
        return f"Error: file not found at {file_path}"
    df = pd.read_csv(file_path)
    return df.to_json(orient="records")

@tool
def analyze_excel_file(file_path: str) -> str:
    """
    Read an Excel file at file_path and return JSON per sheet.
    """
    import pandas as pd
    from pathlib import Path
    import json

    if not Path(file_path).exists():
        return f"Error: file not found at {file_path}"
    xls = pd.read_excel(file_path, sheet_name=None)
    result = {name: df.to_json(orient="records") for name, df in xls.items()}
    return json.dumps(result)

def decode_image(image_base64: str) -> Image.Image:
    """Decode a base64 encoded image string to a PIL Image."""
    image_data = base64.b64decode(image_base64)
    return Image.open(io.BytesIO(image_data))

def encode_image(image_path: str) -> str:
    """Encode an image file to a base64 string."""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def save_image(img: Image.Image, subdir: str = "transformed") -> str:
    """Save a PIL image to a file and return the path."""
    output_dir = Path("images") / subdir
    output_dir.mkdir(parents=True, exist_ok=True)
    # Create a unique filename
    import uuid
    filename = f"{uuid.uuid4()}.png"
    filepath = output_dir / filename
    img.save(filepath)
    return str(filepath)


### ============== IMAGE PROCESSING AND GENERATION TOOLS =============== ###


@tool
def analyze_image(image_base64: str) -> Dict[str, Any]:
    """
    Analyze basic properties of an image (size, mode, color analysis, thumbnail preview).
    Args:
        image_base64 (str): Base64 encoded image string
    Returns:
        Dictionary with analysis result
    """
    try:
        img = decode_image(image_base64)
        width, height = img.size
        mode = img.mode

        if mode in ("RGB", "RGBA"):
            arr = np.array(img)
            avg_colors = arr.mean(axis=(0, 1))
            dominant = ["Red", "Green", "Blue"][np.argmax(avg_colors[:3])]
            brightness = avg_colors.mean()
            color_analysis = {
                "average_rgb": avg_colors.tolist(),
                "brightness": brightness,
                "dominant_color": dominant,
            }
        else:
            color_analysis = {"note": f"No color analysis for mode {mode}"}

        thumbnail = img.copy()
        thumbnail.thumbnail((100, 100))
        thumb_path = save_image(thumbnail, "thumbnails")
        thumbnail_base64 = encode_image(thumb_path)

        return {
            "dimensions": (width, height),
            "mode": mode,
            "color_analysis": color_analysis,
            "thumbnail": thumbnail_base64,
        }
    except Exception as e:
        return {"error": str(e)}


@tool
def transform_image(
    image_base64: str, operation: str, params: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
    """
    Apply transformations: resize, rotate, crop, flip, brightness, contrast, blur, sharpen, grayscale.
    Args:
        image_base64 (str): Base64 encoded input image
        operation (str): Transformation operation
        params (Dict[str, Any], optional): Parameters for the operation
    Returns:
        Dictionary with transformed image (base64)
    """
    try:
        img = decode_image(image_base64)
        params = params or {}

        if operation == "resize":
            img = img.resize(
                (
                    params.get("width", img.width // 2),
                    params.get("height", img.height // 2),
                )
            )
        elif operation == "rotate":
            img = img.rotate(params.get("angle", 90), expand=True)
        elif operation == "crop":
            img = img.crop(
                (
                    params.get("left", 0),
                    params.get("top", 0),
                    params.get("right", img.width),
                    params.get("bottom", img.height),
                )
            )
        elif operation == "flip":
            if params.get("direction", "horizontal") == "horizontal":
                img = img.transpose(Image.FLIP_LEFT_RIGHT)
            else:
                img = img.transpose(Image.FLIP_TOP_BOTTOM)
        elif operation == "adjust_brightness":
            img = ImageEnhance.Brightness(img).enhance(params.get("factor", 1.5))
        elif operation == "adjust_contrast":
            img = ImageEnhance.Contrast(img).enhance(params.get("factor", 1.5))
        elif operation == "blur":
            img = img.filter(ImageFilter.GaussianBlur(params.get("radius", 2)))
        elif operation == "sharpen":
            img = img.filter(ImageFilter.SHARPEN)
        elif operation == "grayscale":
            img = img.convert("L")
        else:
            return {"error": f"Unknown operation: {operation}"}

        result_path = save_image(img)
        result_base64 = encode_image(result_path)
        return {"transformed_image": result_base64}

    except Exception as e:
        return {"error": str(e)}



class Agent:
    def __init__(self):
        """
        Initializes the Agent by setting up the LLM, tools, and the LangGraph graph.
        """
        # Initialize the LLM
        # Make sure to set the NEBIUS_API_KEY environment variable
        nebius_api_key = os.environ.get("NEBIUS_API_KEY")
        if not nebius_api_key:
            try:
                from huggingface_hub import HfApi
                nebius_api_key = HfApi().get_secret("NEBIUS_API_KEY")
            except Exception as e:
                print(f"Could not get NEBIUS_API_KEY from secrets: {e}")
                raise ValueError("NEBIUS_API_KEY environment variable or secret not set.")
        

        llm = ChatOpenAI(
           model="Qwen/Qwen3-235B-A22B-Instruct-2507",
            api_key=nebius_api_key,
            base_url="https://api.studio.nebius.com/v1/"
        )
        
        #llm = ChatOpenAI(
        #    model="gpt-4.1-2025-04-14",
        #)

        # Load default system prompt
        prompt_path = Path(__file__).with_name("system_promt.txt")
        self.default_system_prompt = (
            prompt_path.read_text(encoding="utf-8")
            if prompt_path.exists()
            else "You are a helpful assistant. Answer user questions accurately. If tools are available, think whether they are needed. Provide the final answer only."
        )

        # -----------------------------------------------------------------------------
        # Assemble tool groups for clarity
        # -----------------------------------------------------------------------------
        self.retrieval_tools = [serper_search, open_url]
        self.media_tools = [transcribe_audio]
        self.file_tools = [download_file_from_url, analyze_csv_file, analyze_excel_file]
        self.math_tools = [multiply, add, subtract, divide, modulus, power, square_root]
        self.image_tools = [analyze_image, transform_image]

        self.tools = self.retrieval_tools + self.media_tools + self.file_tools + self.math_tools + self.image_tools

        # Bind tools
        # -----------------------------------------------------------------------------
        self.llm_with_tools = llm.bind_tools(self.tools)

        # -----------------------------------------------------------------------------
        # Agent Graph Definition
        # -----------------------------------------------------------------------------
        graph_builder = StateGraph(State)
        graph_builder.add_node("assistant", self.assistant_node)
        graph_builder.add_node("tools", ToolNode(self.tools))
        graph_builder.add_node("parser", self.parse_node)

        graph_builder.add_edge(START, "assistant")
        graph_builder.add_conditional_edges(
            "assistant",
            self.should_continue,
            {"continue": "tools", "end": "parser"}
        )
        graph_builder.add_edge("tools", "assistant")
        graph_builder.add_edge("parser", "__end__")

        self.graph = graph_builder.compile()

    def assistant_node(self, state: State):
        """
        The assistant node in the graph. It calls the LLM with the current state
        to decide the next action (respond or call a tool).
        """
        messages = state["messages"]
        system_message = SystemMessage(content=self.default_system_prompt)
        
        # Ensure the system message is the first message
        if not messages or not isinstance(messages[0], SystemMessage):
            messages.insert(0, system_message)
            
        response = self.llm_with_tools.invoke(messages)
        return {"messages": [response]}

    def should_continue(self, state: State) -> str:
        """
        Determines whether to continue with tool calls or end the process.
        """
        if state["messages"][-1].tool_calls:
            return "continue"
        return "end"

    def parse_node(self, state: State):
        """
        Parses the final answer to remove the <think> tags.
        """
        import re
        last_message = state["messages"][-1]
        content = last_message.content
        # Use regex to find and extract the content after </think>
        match_think = re.search(r"</think>\s*(.*)", content, re.DOTALL)
        if match_think:
            content = match_think.group(1).strip()

        # Check for 'FINAL ANSWER:' and extract the content after it
        match_final_answer = re.search(r"FINAL ANSWER:\s*(.*)", content, re.IGNORECASE | re.DOTALL)
        if match_final_answer:
            content = match_final_answer.group(1).strip()

        last_message.content = content
        return {"messages": [last_message]}

    def __call__(self, item: dict, api_url: str) -> str:
        """
        Main entry point for the agent.

        Args:
            item: A dictionary containing the question, file_name, etc.
            api_url: The base URL of the API service.

        Returns:
            The agent's final answer as a string.
        """
        question = item.get("question", "")
        file_name = item.get("file_name")

        print(f"Agent received question: {question[:100]}...")

        initial_content = f"Question: {question}"

        if file_name:
            task_id = item.get("task_id")
            # Construct the correct URL for the file using the task_id
            file_url = f"{api_url}/files/{task_id}"
            print(f"File detected. Download URL: {file_url}")

            # Add information about the file to the initial prompt
            initial_content += f'\n\nThere is a file associated with this question named `{file_name}`. To access its contents, first, download it using the `download_file_from_url` tool. Use the URL `"{file_url}"` and be sure to pass the filename `"{file_name}"` to the `filename` argument. After downloading, use the appropriate tool to analyze the file (e.g., `transcribe_audio` for audio files).'

        initial_state = {"messages": [HumanMessage(content=initial_content)]}

        # Invoke the graph
        final_state = self.graph.invoke(initial_state)

        # The final answer is the last message from the assistant
        answer = final_state["messages"][-1].content
        print(f"Agent returning answer: {answer[:100]}...")
        return answer