Spaces:
Runtime error
Runtime error
File size: 9,443 Bytes
94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 aa065e1 94fe1d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "0",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"def load_data(file_path):\n",
" \"\"\"Loads data from a JSONL file.\"\"\"\n",
" data = []\n",
" with open(file_path, 'r', encoding='utf-8') as f:\n",
" for line in f:\n",
" data.append(json.loads(line))\n",
" return data\n",
"\n",
"def search_and_print_task(task_id, data):\n",
" \"\"\"\n",
" Searches for a task by its ID and prints it in a formatted way.\n",
" \"\"\"\n",
" found_task = None\n",
" for sample in data:\n",
" if sample['task_id'] == task_id:\n",
" found_task = sample\n",
" break\n",
"\n",
" if not found_task:\n",
" print(f\"Task with ID '{task_id}' not found.\")\n",
" return\n",
"\n",
" print(\"=\" * 50)\n",
" print(f\"Task ID: {found_task.get('task_id', 'N/A')}\")\n",
" print(f\"Question: {found_task.get('Question', 'N/A')}\")\n",
" print(f\"Level: {found_task.get('Level', 'N/A')}\")\n",
" print(f\"Final Answer: {found_task.get('Final answer', 'N/A')}\")\n",
"\n",
" metadata = found_task.get('Annotator Metadata', {})\n",
" if metadata:\n",
" print(f\"Annotator Metadata: \")\n",
" \n",
" steps = metadata.get('Steps')\n",
" if steps:\n",
" print(f\" βββ Steps: \")\n",
" for step in steps.split('\\\\n'):\n",
" print(f\" β βββ {step}\")\n",
" \n",
" num_steps = metadata.get('Number of steps')\n",
" if num_steps is not None:\n",
" print(f\" βββ Number of steps: {num_steps}\")\n",
" \n",
" duration = metadata.get('How long did this take?')\n",
" if duration:\n",
" print(f\" βββ How long did this take?: {duration}\")\n",
" \n",
" tools = metadata.get('Tools')\n",
" if tools:\n",
" print(f\" βββ Tools:\")\n",
" for tool in tools.split('\\\\n'):\n",
" print(f\" β βββ {tool}\")\n",
"\n",
" num_tools = metadata.get('Number of tools')\n",
" if num_tools is not None:\n",
" print(f\" βββ Number of tools: {num_tools}\")\n",
" \n",
" print(\"=\" * 50)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1",
"metadata": {},
"outputs": [],
"source": [
"# 1. Load the data\n",
"json_QA = load_data('metadata.jsonl')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2",
"metadata": {},
"outputs": [],
"source": [
"\n",
"# 2. Choose a task_id to search for. \n",
"# I'll use the first one from the file as an example.\n",
"example_task_id = \"8e867cd7-cff9-4e6c-867a-ff5ddc2550be\"\n",
"\n",
"# 3. Call the function with the task_id\n",
"search_and_print_task(example_task_id, json_QA)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3",
"metadata": {},
"outputs": [],
"source": [
"import json \n",
"with open('metadata.jsonl', 'r') as f: \n",
" json_list = list(f)\n",
"\n",
"json_QA = []\n",
"for json_str in json_list: \n",
" json_data = json.loads(json_str)\n",
" json_QA.append(json_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4",
"metadata": {},
"outputs": [],
"source": [
"# import specific question"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5",
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"random_samples = random.sample(json_QA, 2)\n",
"for sample in random_samples:\n",
" print(\"=\" * 50)\n",
" print(f\"Task ID: {sample['task_id']}\")\n",
" print(f\"Question: {sample['Question']}\")\n",
" print(f\"Level: {sample['Level']}\")\n",
" print(f\"Final Answer: {sample['Final answer']}\")\n",
" print(f\"Annotator Metadata: \")\n",
" print(f\" βββ Steps: \")\n",
" for step in sample['Annotator Metadata']['Steps'].split('\\n'):\n",
" print(f\" β βββ {step}\")\n",
" print(f\" βββ Number of steps: {sample['Annotator Metadata']['Number of steps']}\")\n",
" print(f\" βββ How long did this take?: {sample['Annotator Metadata']['How long did this take?']}\")\n",
" print(f\" βββ Tools:\")\n",
" for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
" print(f\" β βββ {tool}\")\n",
" print(f\" βββ Number of tools: {sample['Annotator Metadata']['Number of tools']}\")\n",
"print(\"=\" * 50)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from dotenv import load_dotenv\n",
"from langchain_huggingface import HuggingFaceEmbeddings\n",
"from langchain_community.vectorstores import SupabaseVectorStore\n",
"from supabase.client import Client, create_client\n",
"\n",
"\n",
"load_dotenv()\n",
"embeddings = HuggingFaceEmbeddings(model_name=\"sentence-transformers/all-mpnet-base-v2\") # dim=768\n",
"\n",
"supabase_url = os.environ.get(\"SUPABASE_URL\")\n",
"supabase_key = os.environ.get(\"SUPABASE_SERVICE_ROLE_KEY\")\n",
"supabase: Client = create_client(supabase_url, supabase_key)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"docs = []\n",
"cnt = 0 \n",
"for sample in json_QA:\n",
" content = f\"Question : {sample['Question']}\\n\\nFinal answer : {sample['Final answer']}\"\n",
" doc = {\n",
" \"id\" : cnt,\n",
" \"content\" : content,\n",
" \"metadata\" : {\n",
" \"source\" : sample['task_id']\n",
" },\n",
" \"embedding\" : embeddings.embed_query(content),\n",
" }\n",
" docs.append(doc)\n",
" cnt += 1\n",
"\n",
"# upload the documents to the vector database\n",
"try:\n",
" response = (\n",
" supabase.table(\"documents2\")\n",
" .insert(docs)\n",
" .execute()\n",
" )\n",
"except Exception as exception:\n",
" print(\"Error inserting data into Supabase:\", exception)\n",
"\n",
"# # Save the documents (a list of dict) into a csv file, and manually upload it to Supabase\n",
"# import pandas as pd\n",
"# df = pd.DataFrame(docs)\n",
"# df.to_csv('supabase_docs.csv',index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8",
"metadata": {},
"outputs": [],
"source": [
"# add items to vector database\n",
"vector_store = SupabaseVectorStore(\n",
" client=supabase,\n",
" embedding= embeddings,\n",
" table_name=\"documents2\",\n",
" query_name=\"match_documents_2\",\n",
")\n",
"retriever = vector_store.as_retriever()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9",
"metadata": {},
"outputs": [],
"source": [
"query = \"On June 6, 2023, an article by Carolyn Collins Petersen was published in Universe Today. This article mentions a team that produced a paper about their observations, linked at the bottom of the article. Find this paper. Under what NASA award number was the work performed by R. G. Arendt supported by?\"\n",
"# matched_docs = vector_store.similarity_search(query, k=2)\n",
"docs = retriever.invoke(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "10",
"metadata": {},
"outputs": [],
"source": [
"docs[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "11",
"metadata": {},
"outputs": [],
"source": [
"# list of the tools used in all the samples\n",
"from collections import Counter, OrderedDict\n",
"\n",
"tools = []\n",
"for sample in json_QA:\n",
" for tool in sample['Annotator Metadata']['Tools'].split('\\n'):\n",
" tool = tool[2:].strip().lower()\n",
" if tool.startswith(\"(\"):\n",
" tool = tool[11:].strip()\n",
" tools.append(tool)\n",
"tools_counter = OrderedDict(Counter(tools))\n",
"print(\"List of tools used in all samples:\")\n",
"print(\"Total number of tools used:\", len(tools_counter))\n",
"for tool, count in tools_counter.items():\n",
" print(f\" βββ {tool}: {count}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|