File size: 6,963 Bytes
6f31603
797e682
7c0bf42
 
aa065e1
7c0bf42
 
 
 
 
797e682
 
aa065e1
 
797e682
 
 
7c0bf42
 
 
 
85fd688
7c0bf42
 
 
 
 
797e682
7c0bf42
 
797e682
 
 
 
aa065e1
 
797e682
 
 
85fd688
 
 
797e682
 
 
 
7c0bf42
 
aa065e1
7c0bf42
 
 
 
 
797e682
 
aa065e1
 
7c0bf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa065e1
7c0bf42
 
 
 
 
 
 
aa065e1
 
797e682
 
 
85fd688
7c0bf42
797e682
 
 
 
aa065e1
 
797e682
 
 
7c0bf42
797e682
 
 
 
aa065e1
 
797e682
 
 
7253de2
 
7c0bf42
 
 
 
797e682
 
 
 
aa065e1
 
797e682
 
 
7c0bf42
 
 
 
 
 
aa065e1
7c0bf42
 
 
797e682
 
 
 
aa065e1
 
797e682
 
 
7253de2
7c0bf42
 
7253de2
 
7c0bf42
 
 
7253de2
 
 
7c0bf42
797e682
 
 
7c0bf42
aa065e1
797e682
 
7c0bf42
797e682
 
 
 
aa065e1
 
797e682
85fd688
797e682
7c0bf42
 
 
 
 
 
 
 
 
797e682
 
 
 
aa065e1
 
797e682
aa065e1
797e682
85fd688
 
 
 
 
 
 
 
797e682
 
 
 
aa065e1
 
797e682
 
 
7c0bf42
 
 
 
797e682
 
 
 
aa065e1
 
797e682
aa065e1
797e682
85fd688
7c0bf42
85fd688
797e682
 
 
6f31603
 
 
 
 
 
 
797e682
 
 
 
 
 
6f31603
797e682
 
aa065e1
6f31603
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0",
   "metadata": {},
   "source": [
    "# Setup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1",
   "metadata": {},
   "outputs": [],
   "source": [
    "import argparse\n",
    "import os\n",
    "from pathlib import Path\n",
    "from typing import Annotated, List\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "from langchain.tools import tool\n",
    "from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage\n",
    "from langchain_openai import ChatOpenAI\n",
    "from langgraph.graph import StateGraph, START\n",
    "from langgraph.graph.message import add_messages\n",
    "from langgraph.prebuilt import ToolNode, tools_condition\n",
    "from typing_extensions import TypedDict"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2",
   "metadata": {},
   "outputs": [],
   "source": [
    "from dotenv import load_dotenv\n",
    "load_dotenv()\n",
    "\n",
    "import os\n",
    "os.environ[\"LANGSMITH_TRACING\"] = \"true\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3",
   "metadata": {},
   "source": [
    "# Tools"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4",
   "metadata": {},
   "outputs": [],
   "source": [
    "def transcribe_audio(audio_path: str) -> str:\n",
    "    \"\"\"Transcribe the supplied audio file to text using the OpenAI Whisper API (``whisper-1``).\n",
    "\n",
    "    Args:\n",
    "        audio_path: The path to the audio file to transcribe.\n",
    "\n",
    "    Returns:\n",
    "        The transcribed text.\n",
    "\n",
    "    Raises:\n",
    "        RuntimeError: If the ``OPENAI_API_KEY`` environment variable is not set or the API call fails.\n",
    "    \"\"\"\n",
    "    if not Path(audio_path).exists():\n",
    "        return f\"Error: Audio file not found at {audio_path}\"\n",
    "\n",
    "    api_key = os.getenv(\"OPENAI_API_KEY\")\n",
    "    if not api_key:\n",
    "        raise RuntimeError(\"OPENAI_API_KEY environment variable is not set.\")\n",
    "\n",
    "    try:\n",
    "        from openai import OpenAI  # type: ignore\n",
    "\n",
    "        client = OpenAI(api_key=api_key)\n",
    "        with open(audio_path, \"rb\") as f:\n",
    "            transcription = client.audio.transcriptions.create(\n",
    "                model=\"whisper-1\",\n",
    "                file=f,\n",
    "            )\n",
    "        text: str | None = getattr(transcription, \"text\", None)\n",
    "        if text:\n",
    "            return text.strip()\n",
    "        raise RuntimeError(\"Transcription response did not contain text.\")\n",
    "    except Exception as exc:\n",
    "        raise RuntimeError(f\"OpenAI transcription failed: {exc}\") from exc\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5",
   "metadata": {},
   "source": [
    "# Agent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6",
   "metadata": {},
   "outputs": [],
   "source": [
    "class State(TypedDict):\n",
    "    messages: Annotated[List[BaseMessage], add_messages]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7",
   "metadata": {},
   "outputs": [],
   "source": [
    "default_system_prompt = Path(\"system_promt.txt\").read_text(encoding=\"utf-8\") \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8",
   "metadata": {},
   "outputs": [],
   "source": [
    "nebius_api_key = os.environ.get(\"NEBIUS_API_KEY\")\n",
    "llm = ChatOpenAI(\n",
    "            model=\"Qwen/Qwen3-14B\",\n",
    "            api_key=nebius_api_key,\n",
    "            base_url=\"https://api.studio.nebius.com/v1/\",\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9",
   "metadata": {},
   "outputs": [],
   "source": [
    "tools = [transcribe_audio]\n",
    "llm_with_tools = llm.bind_tools(tools)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "10",
   "metadata": {},
   "source": [
    "## Nodes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "11",
   "metadata": {},
   "outputs": [],
   "source": [
    "def assistant_node(state: State):\n",
    "    \"\"\"The assistant node in the graph. It calls the LLM with the current state\n",
    "    to decide the next action (respond or call a tool).\n",
    "    \"\"\"\n",
    "    messages = state[\"messages\"]\n",
    "    system_message = SystemMessage(content=default_system_prompt)\n",
    "\n",
    "    if not messages or not isinstance(messages[0], SystemMessage):\n",
    "        messages.insert(0, system_message)\n",
    "\n",
    "    response = llm_with_tools.invoke(messages)\n",
    "    return {\"messages\": [response]}\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "12",
   "metadata": {},
   "source": [
    "## Graph"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "13",
   "metadata": {},
   "outputs": [],
   "source": [
    "graph_builder = StateGraph(State)\n",
    "graph_builder.add_node(\"assistant\", assistant_node)\n",
    "graph_builder.add_node(\"tools\", ToolNode(tools))\n",
    "\n",
    "graph_builder.add_edge(START, \"assistant\")\n",
    "graph_builder.add_conditional_edges(\"assistant\", tools_condition)\n",
    "graph_builder.add_edge(\"tools\", \"assistant\")\n",
    "\n",
    "graph = graph_builder.compile()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "14",
   "metadata": {},
   "outputs": [],
   "source": [
    "# visualise\n",
    "from IPython.display import Image, display\n",
    "\n",
    "try:\n",
    "    display(Image(graph.get_graph().draw_mermaid_png()))\n",
    "except Exception:\n",
    "    # This requires some extra dependencies and is optional\n",
    "    pass"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "15",
   "metadata": {},
   "outputs": [],
   "source": [
    "question_text = \"What are the filling ingredients in the audio file?\"\n",
    "audio_path    = \"questions/files/99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3.mp3\"\n",
    "\n",
    "answer = graph.invoke({\"messages\": question_text, \"audio_path\": audio_path})\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "16",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Show the messages\n",
    "for m in answer['messages']:\n",
    "    m.pretty_print()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}