File size: 6,483 Bytes
94fe1d2
 
 
 
 
 
 
 
 
 
 
 
 
aa065e1
94fe1d2
 
 
 
 
 
 
 
 
aa065e1
94fe1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa065e1
94fe1d2
aa065e1
94fe1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa065e1
94fe1d2
aa065e1
94fe1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa065e1
94fe1d2
aa065e1
94fe1d2
 
 
 
 
 
aa065e1
94fe1d2
 
 
 
 
 
 
 
 
aa065e1
94fe1d2
aa065e1
94fe1d2
 
 
 
aa065e1
94fe1d2
 
 
 
 
 
aa065e1
94fe1d2
aa065e1
94fe1d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Agent Testing Notebook\n",
    "\n",
    "This notebook is designed to test the `Agent` on a single question fetched from the API. You can select which question to run by changing the `QUESTION_INDEX_TO_TEST` variable."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Optional: Install necessary packages if you haven't already\n",
    "# !pip install python-dotenv langchain langchain_openai langchain_community langchain-tavily langgraph pandas requests openai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import sys\n",
    "import requests\n",
    "import json\n",
    "from pathlib import Path\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "# Add the project root to the Python path to allow importing from 'agent.py'\n",
    "project_root = Path.cwd()\n",
    "if str(project_root) not in sys.path:\n",
    "    sys.path.append(str(project_root))\n",
    "\n",
    "from agent import Agent"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load environment variables from a .env file in the project root\n",
    "load_dotenv()\n",
    "\n",
    "# --- Langsmith Tracing Setup ---\n",
    "# Set the following environment variables to enable Langsmith tracing.\n",
    "# You can set them in your .env file or uncomment the lines below and add your keys.\n",
    "# os.environ[\"LANGSMITH_TRACING\"] = \"true\"\n",
    "# os.environ[\"LANGSMITH_API_KEY\"] = \"YOUR_LANGSMITH_API_KEY\"\n",
    "# os.environ[\"OPENAI_API_KEY\"] = \"YOUR_OPENAI_API_KEY\"\n",
    "# os.environ[\"TAVILY_API_KEY\"] = \"YOUR_TAVILY_API_KEY\"\n",
    "# os.environ[\"NEBIUS_API_KEY\"] = \"YOUR_NEBIUS_API_KEY\"\n",
    "\n",
    "# Verify that the necessary keys are set\n",
    "required_keys = [\"NEBIUS_API_KEY\", \"OPENAI_API_KEY\", \"TAVILY_API_KEY\", \"LANGSMITH_API_KEY\"]\n",
    "print(\"Checking for required environment variables...\")\n",
    "for key in required_keys:\n",
    "    if not os.getenv(key):\n",
    "        print(f\"⚠️  Warning: Environment variable {key} is not set. The agent might not work correctly.\")\n",
    "    else:\n",
    "        print(f\"✅ {key} is set.\")\n",
    "\n",
    "print(\"Environment variables loaded and Langsmith tracing enabled.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# --- 1. Fetch Questions from API ---\n",
    "API_URL = \"https://agents-course-unit4-scoring.hf.space\"\n",
    "QUESTIONS_URL = f\"{API_URL}/questions\"\n",
    "\n",
    "print(f\"Fetching questions from {QUESTIONS_URL}...\")\n",
    "try:\n",
    "    response = requests.get(QUESTIONS_URL, timeout=15)\n",
    "    response.raise_for_status()\n",
    "    questions_data = response.json()\n",
    "    print(f\"Successfully fetched {len(questions_data)} questions.\")\n",
    "    # Save to a local file for easy inspection\n",
    "    with open(\"questions.json\", \"w\") as f:\n",
    "        json.dump(questions_data, f, indent=4)\n",
    "    print(\"Questions also saved to questions.json\")\n",
    "except Exception as e:\n",
    "    print(f\"Failed to fetch questions: {e}\")\n",
    "    questions_data = []"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# --- 2. Display Questions for Selection ---\n",
    "if questions_data:\n",
    "    for i, q in enumerate(questions_data):\n",
    "        print(f\"--- Question {i} ---\")\n",
    "        print(f\"  ID: {q.get('task_id')}\")\n",
    "        print(f\"  Question: {q.get('question')[:300]}...\")\n",
    "        if q.get('file_name'):\n",
    "            print(f\"  File: {q.get('file_name')}\")\n",
    "        print(\"-\" * (len(str(i)) + 14))\n",
    "else:\n",
    "    print(\"No questions to display.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# --- 3. Select a Question to Test ---\n",
    "# Change the index number to test a different question.\n",
    "# The question about the pie recipe is usually at index 4.\n",
    "QUESTION_INDEX_TO_TEST = 16  # <--- CHANGE THIS VALUE\n",
    "\n",
    "print(f\"Will test question at index: {QUESTION_INDEX_TO_TEST}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# --- 4. Run the Agent on the Selected Question ---\n",
    "if not questions_data:\n",
    "    print(\"Cannot run agent, no questions were fetched.\")\n",
    "elif not 0 <= QUESTION_INDEX_TO_TEST < len(questions_data):\n",
    "    print(f\"Invalid index: {QUESTION_INDEX_TO_TEST}. Please choose an index between 0 and {len(questions_data) - 1}.\")\n",
    "else:\n",
    "    try:\n",
    "        # Select the question item\n",
    "        question_item = questions_data[QUESTION_INDEX_TO_TEST]\n",
    "        print(f\"Testing with question ID: {question_item.get('task_id')}\")\n",
    "        print(\"-\" * 30)\n",
    "        \n",
    "        # Instantiate the agent\n",
    "        print(\"Instantiating agent...\")\n",
    "        agent = Agent()\n",
    "        print(\"Agent instantiated successfully.\")\n",
    "        print(\"-\" * 30)\n",
    "\n",
    "        # Run the agent\n",
    "        print(\"Running agent on the question... (This may take a moment)\")\n",
    "        final_answer = agent(item=question_item, api_url=API_URL)\n",
    "        print(\"-\" * 30)\n",
    "\n",
    "        # Display the result\n",
    "        print(\"✅ Agent's Final Answer:\")\n",
    "        print(final_answer)\n",
    "\n",
    "    except Exception as e:\n",
    "        print(f\"An error occurred while running the agent: {e}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}