# VisaTier 4.0 - Premium Immigration ROI Calculator (COMPLETE FIXED) # Enhanced with advanced analytics, monetization, and enterprise features import math import numpy as np import pandas as pd import gradio as gr import plotly.graph_objects as go from typing import Dict, List, Tuple, Optional import plotly.express as px from plotly.subplots import make_subplots import json from datetime import datetime, timedelta import hashlib import secrets import asyncio from dataclasses import dataclass # ========================= # ENHANCED STYLING SYSTEM - FIXED # ========================= PREMIUM_CSS = """ /* Modern Design System */ :root { --primary: #2563eb; --primary-dark: #1d4ed8; --secondary: #0f172a; --accent: #f59e0b; --success: #10b981; --warning: #f59e0b; --error: #ef4444; --surface: #ffffff; --surface-alt: #f8fafc; --text: #1e293b; --text-muted: #64748b; --border: #e2e8f0; --radius: 12px; --shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); --gradient: linear-gradient(135deg, var(--primary) 0%, var(--primary-dark) 100%); } /* Global Styles */ .gradio-container { max-width: 1400px !important; margin: 0 auto !important; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important; } /* Header Component */ .premium-header { background: var(--gradient); color: white; padding: 2rem; border-radius: var(--radius); margin-bottom: 2rem; position: relative; overflow: hidden; } .premium-header::before { content: ''; position: absolute; top: -50%; right: -50%; width: 200%; height: 200%; background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%); animation: float 6s ease-in-out infinite; } @keyframes float { 0%, 100% { transform: translateY(0px) rotate(0deg); } 50% { transform: translateY(-20px) rotate(180deg); } } .header-content { position: relative; z-index: 2; display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem; } .header-title { font-size: 2rem; font-weight: 800; margin-bottom: 0.5rem; } .header-subtitle { opacity: 0.9; font-size: 1.1rem; } .header-stats { text-align: right; font-size: 0.9rem; opacity: 0.8; } /* Profile Selection Cards */ .profile-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; margin: 1.5rem 0; } .profile-card { background: var(--surface); border: 2px solid var(--border); border-radius: var(--radius); padding: 1.5rem; text-align: center; cursor: pointer; transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1); position: relative; overflow: hidden; } .profile-card::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent); transition: left 0.5s; } .profile-card:hover::before { left: 100%; } .profile-card:hover { border-color: var(--primary); transform: translateY(-2px); box-shadow: var(--shadow); } .profile-card.selected { border-color: var(--primary); background: linear-gradient(135deg, var(--primary) 0%, var(--primary-dark) 100%); color: white; } .profile-icon { font-size: 2.5rem; margin-bottom: 1rem; display: block; } .profile-name { font-weight: 600; font-size: 1.1rem; margin-bottom: 0.5rem; } .profile-revenue { font-size: 0.9rem; opacity: 0.8; } /* KPI Cards */ .kpi-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 1.5rem; margin: 2rem 0; } .kpi-card { background: var(--surface); border-radius: var(--radius); padding: 1.5rem; text-align: center; box-shadow: var(--shadow); position: relative; overflow: hidden; } .kpi-card::before { content: ''; position: absolute; top: 0; left: 0; width: 100%; height: 4px; background: var(--gradient); } .kpi-label { font-size: 0.9rem; color: var(--text-muted); margin-bottom: 0.5rem; font-weight: 500; } .kpi-value { font-size: 2rem; font-weight: 800; color: var(--primary); margin-bottom: 0.5rem; } .kpi-note { font-size: 0.8rem; color: var(--text-muted); line-height: 1.4; } .kpi-card.success .kpi-value { color: var(--success); } .kpi-card.warning .kpi-value { color: var(--warning); } .kpi-card.error .kpi-value { color: var(--error); } /* Insight Cards */ .insights-grid { display: grid; gap: 1rem; margin: 1.5rem 0; } .insight-card { background: var(--surface); border-left: 4px solid var(--primary); border-radius: var(--radius); padding: 1.5rem; box-shadow: var(--shadow); transition: transform 0.2s ease; } .insight-card:hover { transform: translateX(4px); } .insight-header { display: flex; align-items: center; margin-bottom: 1rem; } .insight-icon { font-size: 1.5rem; margin-right: 0.75rem; } .insight-title { font-weight: 600; font-size: 1.1rem; margin: 0; } .insight-description { color: var(--text-muted); line-height: 1.5; margin-bottom: 1rem; } /* CTA Buttons */ .cta-button { background: var(--gradient) !important; border: none !important; border-radius: var(--radius) !important; padding: 0.75rem 2rem !important; font-weight: 600 !important; font-size: 1rem !important; color: white !important; cursor: pointer !important; transition: all 0.3s ease !important; text-decoration: none !important; display: inline-block !important; } .cta-button:hover { transform: translateY(-2px) !important; box-shadow: 0 10px 20px rgba(37, 99, 235, 0.3) !important; } .cta-button:active { transform: translateY(0) !important; } /* Progress Bar */ .progress-container { background: var(--border); border-radius: 50px; height: 8px; margin: 1rem 0; overflow: hidden; } .progress-bar { height: 100%; background: var(--gradient); border-radius: 50px; transition: width 0.5s ease; } /* Testimonial */ .testimonial { background: var(--surface-alt); border-radius: var(--radius); padding: 2rem; text-align: center; margin: 2rem 0; position: relative; } .testimonial::before { content: '"'; font-size: 4rem; color: var(--primary); position: absolute; top: -1rem; left: 1rem; font-family: serif; } .testimonial-text { font-style: italic; font-size: 1.1rem; line-height: 1.6; margin-bottom: 1rem; color: var(--text); } .testimonial-author { font-weight: 600; color: var(--primary); } /* Lead Capture Modal */ .lead-modal { background: var(--surface); border-radius: var(--radius); padding: 2rem; box-shadow: 0 20px 25px -5px rgba(0, 0, 0, 0.1); margin: 2rem 0; border: 1px solid var(--border); } .lead-modal h3 { color: var(--primary); margin-bottom: 1rem; } .value-badge { background: var(--success); color: white; padding: 0.5rem 1rem; border-radius: 20px; display: inline-block; font-weight: 600; margin-bottom: 1rem; } .urgency-text { background: var(--warning); color: white; padding: 0.5rem 1rem; border-radius: var(--radius); font-size: 0.9rem; margin-bottom: 1rem; text-align: center; } /* Form Elements */ .form-input { width: 100%; padding: 0.75rem; border: 2px solid var(--border); border-radius: var(--radius); font-size: 1rem; transition: border-color 0.2s ease; margin-bottom: 1rem; } .form-input:focus { outline: none; border-color: var(--primary); box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.1); } /* Responsive Design */ @media (max-width: 768px) { .header-content { flex-direction: column; text-align: center; } .profile-grid { grid-template-columns: 1fr; } .kpi-grid { grid-template-columns: 1fr; } .header-title { font-size: 1.5rem; } } /* Animation Classes */ .fadeIn { animation: fadeIn 0.5s ease-in; } @keyframes fadeIn { from { opacity: 0; transform: translateY(20px); } to { opacity: 1; transform: translateY(0); } } .slideUp { animation: slideUp 0.3s ease-out; } @keyframes slideUp { from { transform: translateY(100%); opacity: 0; } to { transform: translateY(0); opacity: 1; } } /* Country Comparison Table */ .comparison-table { background: var(--surface); border-radius: var(--radius); overflow: hidden; box-shadow: var(--shadow); margin: 1rem 0; } /* Footer */ .premium-footer { background: var(--surface-alt); border-radius: var(--radius); padding: 2rem; margin-top: 3rem; border-top: 1px solid var(--border); } .footer-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 2rem; margin-bottom: 2rem; } .footer-section h4 { color: var(--primary); margin-bottom: 1rem; font-weight: 600; } .footer-section p { color: var(--text-muted); line-height: 1.5; font-size: 0.9rem; } /* Notifications */ .notification-toast { position: fixed; top: 20px; right: 20px; background: var(--surface); border-left: 4px solid var(--success); padding: 1rem; border-radius: var(--radius); box-shadow: var(--shadow); z-index: 1000; animation: slideIn 0.3s ease; } @keyframes slideIn { from { transform: translateX(100%); } to { transform: translateX(0); } } """ # Enhanced theme for Gradio PREMIUM_THEME = gr.themes.Soft( primary_hue="blue", secondary_hue="slate", neutral_hue="slate" ).set( body_background_fill="#f8fafc", body_text_color="#1e293b", button_primary_background_fill="#2563eb", button_primary_background_fill_hover="#1d4ed8", input_background_fill="#ffffff", input_border_width="2px", block_background_fill="#ffffff" ) # ========================= # ENHANCED DATA MODELS - FIXED # ========================= @dataclass class UserProfile: id: str name: str icon: str typical_revenue: float risk_tolerance: int key_concerns: List[str] success_multiplier: float margin_expectations: Tuple[float, float] @dataclass class CountryData: name: str corp_tax: float pers_tax: float living_cost: float business_cost: float setup_cost: float currency: str market_growth: float ease_score: float banking_score: float partnership_score: float visa_options: List[str] market_insights: Dict[str, str] risk_factors: Dict[str, float] seasonality: List[float] # Enhanced user profiles with FIXED emojis ENHANCED_PROFILES = { "tech_startup": UserProfile( id="tech_startup", name="Tech Startup Founder", icon="🚀", typical_revenue=45000, risk_tolerance=80, key_concerns=["talent_access", "ip_protection", "scaling"], success_multiplier=1.4, margin_expectations=(15, 35) ), "crypto_defi": UserProfile( id="crypto_defi", name="Crypto/DeFi Entrepreneur", icon="₿", typical_revenue=85000, risk_tolerance=90, key_concerns=["regulatory_clarity", "banking", "tax_optimization"], success_multiplier=1.8, margin_expectations=(25, 60) ), "consulting": UserProfile( id="consulting", name="Strategic Consultant", icon="💼", typical_revenue=35000, risk_tolerance=50, key_concerns=["client_proximity", "reputation", "networking"], success_multiplier=1.1, margin_expectations=(40, 70) ), "ecommerce": UserProfile( id="ecommerce", name="E-commerce Owner", icon="🛒", typical_revenue=55000, risk_tolerance=65, key_concerns=["logistics", "market_access", "compliance"], success_multiplier=1.3, margin_expectations=(10, 25) ), "real_estate": UserProfile( id="real_estate", name="Real Estate Investor", icon="🏠", typical_revenue=28000, risk_tolerance=40, key_concerns=["property_laws", "financing", "market_stability"], success_multiplier=0.9, margin_expectations=(8, 18) ), "content_creator": UserProfile( id="content_creator", name="Content Creator/Influencer", icon="📱", typical_revenue=25000, risk_tolerance=70, key_concerns=["internet_infrastructure", "tax_treaties", "lifestyle"], success_multiplier=1.2, margin_expectations=(60, 85) ) } # Comprehensive country database with enhanced metrics - UPDATED FOR 2025 ENHANCED_COUNTRIES = { "UAE": CountryData( name="UAE (Dubai)", corp_tax=0.09, # 9% above €95k threshold, 0% below pers_tax=0.00, # Still 0% personal tax living_cost=7500, # Updated for 2025 inflation business_cost=2200, # Increased costs setup_cost=55000, # More realistic with all costs currency="AED", market_growth=7.8, # Slightly reduced from oil volatility ease_score=9.2, banking_score=8.9, partnership_score=95, visa_options=["Golden Visa", "Investor Visa", "Freelancer Visa", "Green Visa"], market_insights={ "tech_startup": "Leading fintech hub with 0% personal tax, but new 9% corporate tax above €95k", "crypto_defi": "Clear crypto regulations with VARA oversight, strong DeFi ecosystem", "consulting": "Premium consulting market, gateway to MENA and South Asia", "ecommerce": "Strategic logistics hub, growing e-commerce infrastructure", "real_estate": "Booming property market with strong rental yields, Golden visa options", "content_creator": "Growing creator economy, no personal income tax advantage" }, risk_factors={"political": 0.1, "economic": 0.18, "regulatory": 0.15}, # Higher regulatory risk seasonality=[1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.6, 0.8, 1.0, 1.2, 1.3] ), "Singapore": CountryData( name="Singapore", corp_tax=0.17, # Flat 17%, but with exemptions pers_tax=0.22, # Progressive, this is top rate living_cost=7800, # Higher living costs business_cost=2100, setup_cost=42000, # More realistic setup costs currency="SGD", market_growth=6.5, # Stable growth ease_score=9.7, # Still world's best banking_score=9.8, partnership_score=94, visa_options=["Tech Pass", "Entrepreneur Pass", "Employment Pass", "One Pass"], market_insights={ "tech_startup": "Asia's Silicon Valley with excellent government support and tax exemptions", "crypto_defi": "Progressive crypto regulations, established fintech sector", "consulting": "Premium Asian market with highest consulting rates", "ecommerce": "Gateway to 650M ASEAN consumers, excellent logistics", "real_estate": "Stable property market with strong fundamentals", "content_creator": "Asian content hub with English proficiency advantage" }, risk_factors={"political": 0.02, "economic": 0.08, "regulatory": 0.03}, seasonality=[0.9, 0.85, 0.9, 1.0, 1.05, 1.1, 1.2, 1.15, 1.05, 1.0, 0.95, 1.0] ), "Estonia": CountryData( name="Estonia", corp_tax=0.20, # 20% on distributed profits only pers_tax=0.20, living_cost=3200, # Post-inflation adjustment business_cost=750, setup_cost=12000, # Higher due to compliance costs currency="EUR", market_growth=5.2, ease_score=9.1, banking_score=8.4, partnership_score=88, visa_options=["e-Residency", "Startup Visa", "Digital Nomad", "EU Passport"], market_insights={ "tech_startup": "Digital-first society with deferred corporate tax model", "crypto_defi": "Crypto licensing available, progressive digital framework", "consulting": "EU market access at lower costs than Western Europe", "ecommerce": "Strong digital infrastructure, EU single market access", "real_estate": "Emerging market with EU citizenship pathway", "content_creator": "Digital nomad friendly with excellent connectivity" }, risk_factors={"political": 0.08, "economic": 0.15, "regulatory": 0.06}, seasonality=[0.8, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.3, 1.1, 1.0, 0.9, 0.8] ), "Portugal": CountryData( name="Portugal", corp_tax=0.21, # Standard rate pers_tax=0.48, # High personal tax rate living_cost=2800, # Increased living costs business_cost=650, setup_cost=18000, # Higher setup costs currency="EUR", market_growth=4.2, # Slower growth ease_score=7.6, banking_score=7.8, partnership_score=80, visa_options=["D7 Visa", "Golden Visa", "Tech Visa", "HQA Tax Regime"], market_insights={ "tech_startup": "Growing tech scene with NHR regime being phased out", "crypto_defi": "Developing crypto framework, tax optimization opportunities reducing", "consulting": "EU access with lower costs, but increasing tax burden", "ecommerce": "Growing market with EU access advantages", "real_estate": "Modified Golden visa program, property market pressures", "content_creator": "Popular nomad destination but losing tax advantages" }, risk_factors={"political": 0.05, "economic": 0.22, "regulatory": 0.12}, seasonality=[0.8, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.5, 1.2, 1.0, 0.9, 0.9] ), "USA": CountryData( name="USA (Delaware)", corp_tax=0.21, # Federal rate pers_tax=0.37, # Federal + state combined living_cost=9500, # Higher due to inflation business_cost=2800, setup_cost=75000, # Realistic including legal costs currency="USD", market_growth=5.8, ease_score=8.2, banking_score=9.4, partnership_score=82, visa_options=["EB-5", "L-1", "E-2", "O-1", "EB-1A"], market_insights={ "tech_startup": "Largest VC ecosystem globally, complex tax structure", "crypto_defi": "Evolving regulations, large market opportunity", "consulting": "Premium rates globally, extensive market access", "ecommerce": "Largest consumer market, advanced infrastructure", "real_estate": "Diverse markets with appreciation potential", "content_creator": "Global content monetization hub" }, risk_factors={"political": 0.18, "economic": 0.12, "regulatory": 0.15}, seasonality=[1.0, 0.95, 1.05, 1.15, 1.1, 1.05, 0.95, 0.9, 1.1, 1.2, 1.25, 1.4] ), "UK": CountryData( name="United Kingdom", corp_tax=0.25, # Increased to 25% in 2023 pers_tax=0.45, # Top rate living_cost=6200, # Post-Brexit inflation business_cost=1600, setup_cost=28000, # Higher compliance costs currency="GBP", market_growth=2.8, # Lower growth post-Brexit ease_score=7.9, banking_score=8.9, partnership_score=75, # Reduced due to Brexit impact visa_options=["Innovator Founder", "Scale-up", "Global Talent", "High Potential Individual"], market_insights={ "tech_startup": "Strong fintech sector but higher taxes, R&D incentives available", "crypto_defi": "Developing framework, traditional finance integration", "consulting": "Premium market access but higher tax burden", "ecommerce": "Mature market with Brexit trade complexities", "real_estate": "Market adjustment period, some opportunities", "content_creator": "English-speaking advantage but tax burden increased" }, risk_factors={"political": 0.15, "economic": 0.18, "regulatory": 0.10}, seasonality=[0.9, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.25, 1.1, 1.05, 1.0, 1.2] ) } # ========================= # CORRECTED CALCULATION ENGINE - COMPLETE # ========================= class ROICalculator: def __init__(self): self.monte_carlo_iterations = 500 # Reduced for performance self.confidence_intervals = [0.1, 0.25, 0.5, 0.75, 0.9] def calculate_corporate_tax_uae(self, annual_profit_eur: float) -> float: """Calculate UAE corporate tax with correct progressive structure""" threshold_eur = 95000 # €95,000 equivalent to AED 375,000 if annual_profit_eur <= threshold_eur: return 0 else: return (annual_profit_eur - threshold_eur) * 0.09 def calculate_enhanced_roi( self, profile: UserProfile, country: CountryData, current_revenue: float, current_margin: float, current_corp_tax: float, current_pers_tax: float, current_living: float, current_business: float, revenue_multiplier: float, margin_improvement: float, success_probability: float, time_horizon: int, discount_rate: float ) -> Dict: """Enhanced ROI calculation with CORRECTED tax formulas""" try: # Input validation and sanitization current_revenue = max(1000, float(current_revenue or 45000)) current_margin = max(1, min(80, float(current_margin or 25))) current_corp_tax = max(0, min(50, float(current_corp_tax or 25))) current_pers_tax = max(0, min(50, float(current_pers_tax or 15))) current_living = max(500, float(current_living or 4500)) current_business = max(100, float(current_business or 800)) revenue_multiplier = max(0.5, min(10, float(revenue_multiplier or 2.5))) margin_improvement = max(-20, min(50, float(margin_improvement or 8))) success_probability = max(10, min(100, float(success_probability or 75))) time_horizon = max(12, min(120, int(time_horizon or 60))) discount_rate = max(1, min(50, float(discount_rate or 12))) # CURRENT SITUATION (MONTHLY BASIS) current_profit = current_revenue * (current_margin / 100) # CORRECTED current tax calculation current_corp_tax_amount = current_profit * (current_corp_tax / 100) current_after_corp_tax = current_profit - current_corp_tax_amount current_pers_tax_amount = current_after_corp_tax * (current_pers_tax / 100) current_after_tax = current_after_corp_tax - current_pers_tax_amount current_net = current_after_tax - current_living - current_business # NEW SITUATION WITH GROWTH new_revenue = current_revenue * revenue_multiplier * profile.success_multiplier new_margin = min(90, current_margin + margin_improvement) new_profit = new_revenue * (new_margin / 100) # CORRECTED new tax calculation with UAE special handling if country.name == "UAE (Dubai)": # Convert monthly to annual for UAE tax calculation annual_profit = new_profit * 12 new_corp_tax_amount_annual = self.calculate_corporate_tax_uae(annual_profit) new_corp_tax_amount = new_corp_tax_amount_annual / 12 # Back to monthly else: # CORRECTED formula - removed the *100 error new_corp_tax_amount = new_profit * country.corp_tax new_after_corp_tax = new_profit - new_corp_tax_amount new_pers_tax_amount = new_after_corp_tax * country.pers_tax new_after_tax = new_after_corp_tax - new_pers_tax_amount new_net = new_after_tax - country.living_cost - country.business_cost # CASH FLOW ANALYSIS monthly_delta = (new_net - current_net) * (success_probability / 100) setup_cost = country.setup_cost # Calculate annual tax savings for reporting annual_tax_savings = ((current_corp_tax_amount + current_pers_tax_amount) - (new_corp_tax_amount + new_pers_tax_amount)) * 12 # Apply seasonality and create cash flow projection monthly_flows = [] cumulative = -setup_cost payback_month = None for month in range(1, time_horizon + 1): seasonal_factor = country.seasonality[(month - 1) % 12] monthly_cf = monthly_delta * seasonal_factor monthly_flows.append(monthly_cf) cumulative += monthly_cf if payback_month is None and cumulative >= 0: payback_month = month # NPV calculation discount_monthly = (1 + discount_rate/100) ** (1/12) - 1 npv = -setup_cost + sum(cf / (1 + discount_monthly) ** month for month, cf in enumerate(monthly_flows, 1)) # IRR calculation def npv_at_rate(rate): if rate <= -0.99: return float('inf') monthly_rate = (1 + rate) ** (1/12) - 1 return -setup_cost + sum(cf / (1 + monthly_rate) ** month for month, cf in enumerate(monthly_flows, 1)) irr_annual = self._find_irr(npv_at_rate) # ROI and other metrics total_return = sum(monthly_flows) roi = (total_return / setup_cost) * 100 if setup_cost > 0 else 0 payback_years = (payback_month / 12) if payback_month else float('inf') # Monte Carlo simulation monte_carlo_result = self._run_monte_carlo_simulation( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, time_horizon, discount_rate ) # Sensitivity analysis sensitivity_result = self._perform_sensitivity_analysis( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, time_horizon, discount_rate ) # Risk assessment risk_score = self._calculate_risk_score(country, profile) opportunity_score = self._calculate_opportunity_score({ 'roi': roi, 'npv': npv, 'irr_annual': irr_annual }, country, profile) return { "npv": npv, "roi": roi, "irr_annual": irr_annual * 100 if irr_annual else 0, "payback_months": payback_month or float('inf'), "payback_years": payback_years, "monthly_delta": monthly_delta, "total_return": total_return, "monthly_flows": monthly_flows, "setup_cost": setup_cost, "annual_tax_savings": annual_tax_savings, "monte_carlo": monte_carlo_result, "sensitivity": sensitivity_result, "risk_score": risk_score, "opportunity_score": opportunity_score, "tax_breakdown": { "current_corp_tax": current_corp_tax_amount * 12, "new_corp_tax": new_corp_tax_amount * 12, "current_personal_tax": current_pers_tax_amount * 12, "new_personal_tax": new_pers_tax_amount * 12, "total_tax_savings": annual_tax_savings } } except Exception as e: print(f"ROI Calculation Error: {e}") return { "npv": 0, "roi": 0, "irr_annual": 0, "payback_months": float('inf'), "payback_years": float('inf'), "monthly_delta": 0, "total_return": 0, "monthly_flows": [0] * time_horizon, "setup_cost": country.setup_cost, "annual_tax_savings": 0, "risk_score": 50, "opportunity_score": 50, "tax_breakdown": {"error": str(e)} } def _run_monte_carlo_simulation(self, profile, country, *args) -> Dict: """Monte Carlo simulation for risk assessment""" try: results = [] for _ in range(self.monte_carlo_iterations): # Add randomness to key variables revenue_variance = max(0.3, np.random.normal(1.0, 0.15)) margin_variance = max(0.5, np.random.normal(1.0, 0.10)) success_variance = max(0.1, np.random.normal(1.0, 0.20)) # Modify inputs with variance modified_args = list(args) modified_args[0] *= revenue_variance # revenue modified_args[1] *= margin_variance # margin # Run simplified calculation try: result = self.calculate_enhanced_roi(profile, country, *modified_args) if result and 'roi' in result and result['roi'] is not None: results.append(result) except: continue if not results: return {"mean_roi": 0, "std_roi": 0, "probability_positive_roi": 0} rois = [r['roi'] for r in results if 'roi' in r and r['roi'] is not None] npvs = [r['npv'] for r in results if 'npv' in r and r['npv'] is not None] if not rois: return {"mean_roi": 0, "std_roi": 0, "probability_positive_roi": 0} confidence_intervals = {} for ci in self.confidence_intervals: confidence_intervals[f'roi_{int(ci*100)}'] = np.percentile(rois, ci * 100) if npvs: confidence_intervals[f'npv_{int(ci*100)}'] = np.percentile(npvs, ci * 100) return { "mean_roi": np.mean(rois), "std_roi": np.std(rois), "mean_npv": np.mean(npvs) if npvs else 0, "std_npv": np.std(npvs) if npvs else 0, "confidence_intervals": confidence_intervals, "probability_positive_roi": sum(1 for roi in rois if roi > 0) / len(rois) } except Exception as e: print(f"Monte Carlo error: {e}") return {"mean_roi": 0, "std_roi": 0, "probability_positive_roi": 0} def _perform_sensitivity_analysis(self, profile, country, *args) -> Dict: """Simplified sensitivity analysis""" try: base_args = list(args) base_result = self.calculate_enhanced_roi(profile, country, *base_args) base_roi = base_result.get('roi', 0) sensitivities = {} # Test revenue sensitivity (10% increase) test_args = base_args.copy() test_args[0] *= 1.1 test_result = self.calculate_enhanced_roi(profile, country, *test_args) sensitivities['revenue'] = (test_result.get('roi', 0) - base_roi) / 10 # Test margin sensitivity (5pp increase) test_args = base_args.copy() test_args[1] += 5 test_result = self.calculate_enhanced_roi(profile, country, *test_args) sensitivities['margin'] = (test_result.get('roi', 0) - base_roi) / 5 # Test revenue multiplier sensitivity test_args = base_args.copy() test_args[6] *= 1.2 # revenue_multiplier test_result = self.calculate_enhanced_roi(profile, country, *test_args) sensitivities['revenue_multiplier'] = (test_result.get('roi', 0) - base_roi) / 20 # Test success probability sensitivity test_args = base_args.copy() test_args[8] += 10 # success_probability test_result = self.calculate_enhanced_roi(profile, country, *test_args) sensitivities['success_probability'] = (test_result.get('roi', 0) - base_roi) / 10 return sensitivities except: return {"revenue": 0, "margin": 0, "revenue_multiplier": 0, "success_probability": 0} def _find_irr(self, npv_function, precision=1e-6, max_iterations=50): """Find IRR using binary search""" try: low, high = -0.99, 5.0 for _ in range(max_iterations): mid = (low + high) / 2 npv = npv_function(mid) if abs(npv) < precision: return mid elif npv > 0: low = mid else: high = mid return None except: return None def _calculate_risk_score(self, country: CountryData, profile: UserProfile) -> float: """Calculate overall risk score""" try: political_risk = country.risk_factors.get('political', 0.1) * 30 economic_risk = country.risk_factors.get('economic', 0.1) * 40 regulatory_risk = country.risk_factors.get('regulatory', 0.1) * 30 risk_adjustment = (100 - profile.risk_tolerance) / 100 total_risk = (political_risk + economic_risk + regulatory_risk) * (1 + risk_adjustment) return min(100, total_risk) except: return 50 def _calculate_opportunity_score(self, result: Dict, country: CountryData, profile: UserProfile) -> float: """Calculate opportunity score""" try: roi_score = min(50, result.get('roi', 0) / 4) growth_score = country.market_growth * 5 ease_score = country.ease_score * 2 partnership_score = country.partnership_score / 2 return min(100, roi_score + growth_score + ease_score + partnership_score) except: return 50 # ========================= # ENHANCED VISUALIZATION ENGINE # ========================= class ChartGenerator: @staticmethod def create_roi_dashboard(result: Dict, country_name: str, profile_name: str) -> go.Figure: """Create comprehensive ROI dashboard""" try: fig = make_subplots( rows=2, cols=2, subplot_titles=("Cash Flow Projection", "ROI Distribution", "Risk vs Return", "Sensitivity Analysis"), specs=[[{"type": "scatter"}, {"type": "histogram"}], [{"type": "scatter"}, {"type": "bar"}]] ) # Cash flow projection monthly_flows = result.get('monthly_flows', [0] * 60) months = list(range(len(monthly_flows))) cumulative = np.cumsum([-result.get('setup_cost', 50000)] + monthly_flows) fig.add_trace( go.Scatter( x=months, y=cumulative, mode='lines+markers', name='Cumulative Cash Flow', line=dict(color='#2563eb', width=3) ), row=1, col=1 ) # ROI distribution (Monte Carlo) if 'monte_carlo' in result: mc_data = result['monte_carlo'] mean_roi = mc_data.get('mean_roi', 0) std_roi = max(1, mc_data.get('std_roi', 10)) roi_samples = np.random.normal(mean_roi, std_roi, 500) fig.add_trace( go.Histogram( x=roi_samples, name='ROI Distribution', opacity=0.7, marker_color='#10b981' ), row=1, col=2 ) # Risk vs Return comparison countries = list(ENHANCED_COUNTRIES.keys()) calculator = ROICalculator() risk_scores = [] return_scores = [] for c in countries: try: risk_score = calculator._calculate_risk_score( ENHANCED_COUNTRIES[c], ENHANCED_PROFILES.get('tech_startup', list(ENHANCED_PROFILES.values())[0]) ) risk_scores.append(risk_score) return_scores.append(ENHANCED_COUNTRIES[c].market_growth) except: risk_scores.append(50) return_scores.append(5) fig.add_trace( go.Scatter( x=return_scores, y=risk_scores, mode='markers+text', text=countries, textposition="top center", name='Countries', marker=dict(size=10, color='#f59e0b') ), row=2, col=1 ) # Sensitivity analysis if 'sensitivity' in result: sens_vars = list(result['sensitivity'].keys()) sens_values = list(result['sensitivity'].values()) fig.add_trace( go.Bar( x=sens_vars, y=sens_values, name='Sensitivity', marker_color='#8b5cf6' ), row=2, col=2 ) fig.update_layout( height=600, title_text=f"ROI Analysis Dashboard: {profile_name} → {country_name}", showlegend=False, template="plotly_white" ) return fig except Exception as e: print(f"Chart generation error: {e}") fig = go.Figure() fig.add_annotation( text=f"Chart generation error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig @staticmethod def create_country_comparison_radar(countries: List[str], profile: str) -> go.Figure: """Create radar chart comparing countries""" try: categories = ['Tax Efficiency', 'Cost of Living', 'Market Growth', 'Ease of Business', 'Banking', 'Overall Score'] fig = go.Figure() colors = ['#2563eb', '#10b981', '#f59e0b', '#ef4444', '#8b5cf6'] for i, country_key in enumerate(countries[:5]): # Limit to 5 countries if country_key in ENHANCED_COUNTRIES: country = ENHANCED_COUNTRIES[country_key] # Normalize scores to 0-100 scale tax_eff = max(0, (1 - (country.corp_tax + country.pers_tax)) * 100) cost_eff = max(0, 100 - (country.living_cost / 100)) market = country.market_growth * 10 ease = country.ease_score * 10 banking = country.banking_score * 10 overall = country.partnership_score values = [tax_eff, cost_eff, market, ease, banking, overall] fig.add_trace(go.Scatterpolar( r=values + [values[0]], # Close the polygon theta=categories + [categories[0]], fill='toself', name=country.name, line_color=colors[i % len(colors)], opacity=0.6 )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 100] ) ), title="Multi-Country Comparison Radar", height=500 ) return fig except Exception as e: print(f"Radar chart error: {e}") fig = go.Figure() fig.add_annotation(text=f"Radar chart error: {str(e)}", x=0.5, y=0.5) return fig # ========================= # LEAD GENERATION & MONETIZATION ENGINE # ========================= class LeadEngine: def __init__(self): self.conversion_thresholds = { 'email_capture': {'roi_min': 50, 'confidence': 0.3}, 'consultation_booking': {'roi_min': 150, 'confidence': 0.6}, 'premium_service': {'roi_min': 250, 'confidence': 0.8} } def generate_personalized_offer(self, result: Dict, profile: UserProfile, country: CountryData) -> Dict: """Generate personalized offer based on calculation results""" try: roi = result.get('roi', 0) confidence = result.get('monte_carlo', {}).get('probability_positive_roi', 0) if roi >= 250 and confidence >= 0.8: return { 'tier': 'premium', 'title': f'Complete {country.name} Immigration Concierge', 'price': '$4,997', 'discount_price': '$2,497', 'value': '$15,000+', 'urgency': 'Only 5 spots available this month', 'includes': [ 'Personal immigration lawyer consultation', 'Tax optimization strategy session', 'Business setup and banking introductions', '12-month ongoing support', 'Exclusive network access' ], 'cta': 'Secure Your Premium Package', 'guarantee': '100% money-back guarantee if visa rejected' } elif roi >= 150 and confidence >= 0.6: return { 'tier': 'standard', 'title': f'{country.name} Business Migration Blueprint', 'price': '$997', 'discount_price': '$497', 'value': '$3,000+', 'urgency': 'Limited time 50% discount', 'includes': [ 'Complete legal requirements guide', 'Step-by-step timeline and checklist', 'Tax optimization strategies', '60-day email support', 'Resource directory' ], 'cta': 'Get Your Blueprint Now', 'guarantee': '30-day money-back guarantee' } else: return { 'tier': 'starter', 'title': f'{country.name} Exploration Package', 'price': '$297', 'discount_price': '$97', 'value': '$500+', 'urgency': 'Free for first 100 users', 'includes': [ 'Country overview report', 'Visa options comparison', 'Basic cost calculator', 'Initial checklist' ], 'cta': 'Start Your Journey', 'guarantee': 'Risk-free trial' } except Exception as e: print(f"Offer generation error: {e}") return { 'tier': 'starter', 'title': 'Immigration Exploration Package', 'price': '$297', 'discount_price': '$97', 'value': '$500+', 'urgency': 'Limited time offer', 'includes': ['Basic consultation', 'Initial assessment'], 'cta': 'Get Started', 'guarantee': 'Money-back guarantee' } # ========================= # MAIN APPLICATION BUILDER - COMPLETE # ========================= def create_premium_immigration_app(): """Create the enhanced VisaTier 4.0 application""" with gr.Blocks(theme=PREMIUM_THEME, css=PREMIUM_CSS, title="VisaTier 4.0") as app: # State management current_profile = gr.State("tech_startup") calculation_results = gr.State({}) user_session = gr.State({}) # Enhanced Header gr.HTML("""
AI-Powered Business Migration Intelligence with Monte Carlo Analysis