# VisaTier 4.0 - Premium Immigration ROI Calculator (FIXED) # Enhanced with advanced analytics, monetization, and enterprise features import math import numpy as np import pandas as pd import gradio as gr import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import json from datetime import datetime, timedelta import hashlib import secrets from typing import Dict, List, Tuple, Optional import asyncio from dataclasses import dataclass # ========================= # ENHANCED STYLING SYSTEM - FIXED # ========================= PREMIUM_CSS = """ /* Modern Design System */ :root { --primary: #2563eb; --primary-dark: #1d4ed8; --secondary: #0f172a; --accent: #f59e0b; --success: #10b981; --warning: #f59e0b; --error: #ef4444; --surface: #ffffff; --surface-alt: #f8fafc; --text: #1e293b; --text-muted: #64748b; --border: #e2e8f0; --radius: 12px; --shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); --gradient: linear-gradient(135deg, var(--primary) 0%, var(--primary-dark) 100%); } /* Global Styles */ .gradio-container { max-width: 1400px !important; margin: 0 auto !important; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important; } /* Header Component */ .premium-header { background: var(--gradient); color: white; padding: 2rem; border-radius: var(--radius); margin-bottom: 2rem; position: relative; overflow: hidden; } .premium-header::before { content: ''; position: absolute; top: -50%; right: -50%; width: 200%; height: 200%; background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%); animation: float 6s ease-in-out infinite; } @keyframes float { 0%, 100% { transform: translateY(0px) rotate(0deg); } 50% { transform: translateY(-20px) rotate(180deg); } } .header-content { position: relative; z-index: 2; display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem; } .header-title { font-size: 2rem; font-weight: 800; margin-bottom: 0.5rem; } .header-subtitle { opacity: 0.9; font-size: 1.1rem; } .header-stats { text-align: right; font-size: 0.9rem; opacity: 0.8; } /* Profile Selection Cards */ .profile-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; margin: 1.5rem 0; } .profile-card { background: var(--surface); border: 2px solid var(--border); border-radius: var(--radius); padding: 1.5rem; text-align: center; cursor: pointer; transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1); position: relative; overflow: hidden; } .profile-card::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent); transition: left 0.5s; } .profile-card:hover::before { left: 100%; } .profile-card:hover { border-color: var(--primary); transform: translateY(-2px); box-shadow: var(--shadow); } .profile-card.selected { border-color: var(--primary); background: linear-gradient(135deg, var(--primary) 0%, var(--primary-dark) 100%); color: white; } .profile-icon { font-size: 2.5rem; margin-bottom: 1rem; display: block; } .profile-name { font-weight: 600; font-size: 1.1rem; margin-bottom: 0.5rem; } .profile-revenue { font-size: 0.9rem; opacity: 0.8; } /* KPI Cards */ .kpi-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 1.5rem; margin: 2rem 0; } .kpi-card { background: var(--surface); border-radius: var(--radius); padding: 1.5rem; text-align: center; box-shadow: var(--shadow); position: relative; overflow: hidden; } .kpi-card::before { content: ''; position: absolute; top: 0; left: 0; width: 100%; height: 4px; background: var(--gradient); } .kpi-label { font-size: 0.9rem; color: var(--text-muted); margin-bottom: 0.5rem; font-weight: 500; } .kpi-value { font-size: 2rem; font-weight: 800; color: var(--primary); margin-bottom: 0.5rem; } .kpi-note { font-size: 0.8rem; color: var(--text-muted); line-height: 1.4; } .kpi-card.success .kpi-value { color: var(--success); } .kpi-card.warning .kpi-value { color: var(--warning); } .kpi-card.error .kpi-value { color: var(--error); } /* Insight Cards */ .insights-grid { display: grid; gap: 1rem; margin: 1.5rem 0; } .insight-card { background: var(--surface); border-left: 4px solid var(--primary); border-radius: var(--radius); padding: 1.5rem; box-shadow: var(--shadow); transition: transform 0.2s ease; } .insight-card:hover { transform: translateX(4px); } .insight-header { display: flex; align-items: center; margin-bottom: 1rem; } .insight-icon { font-size: 1.5rem; margin-right: 0.75rem; } .insight-title { font-weight: 600; font-size: 1.1rem; margin: 0; } .insight-description { color: var(--text-muted); line-height: 1.5; margin-bottom: 1rem; } /* CTA Buttons */ .cta-button { background: var(--gradient) !important; border: none !important; border-radius: var(--radius) !important; padding: 0.75rem 2rem !important; font-weight: 600 !important; font-size: 1rem !important; color: white !important; cursor: pointer !important; transition: all 0.3s ease !important; text-decoration: none !important; display: inline-block !important; } .cta-button:hover { transform: translateY(-2px) !important; box-shadow: 0 10px 20px rgba(37, 99, 235, 0.3) !important; } .cta-button:active { transform: translateY(0) !important; } /* Progress Bar */ .progress-container { background: var(--border); border-radius: 50px; height: 8px; margin: 1rem 0; overflow: hidden; } .progress-bar { height: 100%; background: var(--gradient); border-radius: 50px; transition: width 0.5s ease; } /* Testimonial */ .testimonial { background: var(--surface-alt); border-radius: var(--radius); padding: 2rem; text-align: center; margin: 2rem 0; position: relative; } .testimonial::before { content: '"'; font-size: 4rem; color: var(--primary); position: absolute; top: -1rem; left: 1rem; font-family: serif; } .testimonial-text { font-style: italic; font-size: 1.1rem; line-height: 1.6; margin-bottom: 1rem; color: var(--text); } .testimonial-author { font-weight: 600; color: var(--primary); } /* Lead Capture Modal */ .lead-modal { background: var(--surface); border-radius: var(--radius); padding: 2rem; box-shadow: 0 20px 25px -5px rgba(0, 0, 0, 0.1); margin: 2rem 0; border: 1px solid var(--border); } .lead-modal h3 { color: var(--primary); margin-bottom: 1rem; } .value-badge { background: var(--success); color: white; padding: 0.5rem 1rem; border-radius: 20px; display: inline-block; font-weight: 600; margin-bottom: 1rem; } .urgency-text { background: var(--warning); color: white; padding: 0.5rem 1rem; border-radius: var(--radius); font-size: 0.9rem; margin-bottom: 1rem; text-align: center; } /* Form Elements */ .form-input { width: 100%; padding: 0.75rem; border: 2px solid var(--border); border-radius: var(--radius); font-size: 1rem; transition: border-color 0.2s ease; margin-bottom: 1rem; } .form-input:focus { outline: none; border-color: var(--primary); box-shadow: 0 0 0 3px rgba(37, 99, 235, 0.1); } /* Responsive Design */ @media (max-width: 768px) { .header-content { flex-direction: column; text-align: center; } .profile-grid { grid-template-columns: 1fr; } .kpi-grid { grid-template-columns: 1fr; } .header-title { font-size: 1.5rem; } } /* Animation Classes */ .fadeIn { animation: fadeIn 0.5s ease-in; } @keyframes fadeIn { from { opacity: 0; transform: translateY(20px); } to { opacity: 1; transform: translateY(0); } } .slideUp { animation: slideUp 0.3s ease-out; } @keyframes slideUp { from { transform: translateY(100%); opacity: 0; } to { transform: translateY(0); opacity: 1; } } /* Country Comparison Table */ .comparison-table { background: var(--surface); border-radius: var(--radius); overflow: hidden; box-shadow: var(--shadow); margin: 1rem 0; } /* Footer */ .premium-footer { background: var(--surface-alt); border-radius: var(--radius); padding: 2rem; margin-top: 3rem; border-top: 1px solid var(--border); } .footer-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 2rem; margin-bottom: 2rem; } .footer-section h4 { color: var(--primary); margin-bottom: 1rem; font-weight: 600; } .footer-section p { color: var(--text-muted); line-height: 1.5; font-size: 0.9rem; } /* Notifications */ .notification-toast { position: fixed; top: 20px; right: 20px; background: var(--surface); border-left: 4px solid var(--success); padding: 1rem; border-radius: var(--radius); box-shadow: var(--shadow); z-index: 1000; animation: slideIn 0.3s ease; } @keyframes slideIn { from { transform: translateX(100%); } to { transform: translateX(0); } } """ # Enhanced theme for Gradio PREMIUM_THEME = gr.themes.Soft( primary_hue="blue", secondary_hue="slate", neutral_hue="slate" ).set( body_background_fill="#f8fafc", body_text_color="#1e293b", button_primary_background_fill="#2563eb", button_primary_background_fill_hover="#1d4ed8", input_background_fill="#ffffff", input_border_width="2px", block_background_fill="#ffffff" ) # ========================= # ENHANCED DATA MODELS - FIXED # ========================= @dataclass class UserProfile: id: str name: str icon: str typical_revenue: float risk_tolerance: int key_concerns: List[str] success_multiplier: float margin_expectations: Tuple[float, float] @dataclass class CountryData: name: str corp_tax: float pers_tax: float living_cost: float business_cost: float setup_cost: float currency: str market_growth: float ease_score: float banking_score: float partnership_score: float visa_options: List[str] market_insights: Dict[str, str] risk_factors: Dict[str, float] seasonality: List[float] # Enhanced user profiles with FIXED emojis ENHANCED_PROFILES = { "tech_startup": UserProfile( id="tech_startup", name="Tech Startup Founder", icon="🚀", typical_revenue=45000, risk_tolerance=80, key_concerns=["talent_access", "ip_protection", "scaling"], success_multiplier=1.4, margin_expectations=(15, 35) ), "crypto_defi": UserProfile( id="crypto_defi", name="Crypto/DeFi Entrepreneur", icon="₿", typical_revenue=85000, risk_tolerance=90, key_concerns=["regulatory_clarity", "banking", "tax_optimization"], success_multiplier=1.8, margin_expectations=(25, 60) ), "consulting": UserProfile( id="consulting", name="Strategic Consultant", icon="💼", typical_revenue=35000, risk_tolerance=50, key_concerns=["client_proximity", "reputation", "networking"], success_multiplier=1.1, margin_expectations=(40, 70) ), "ecommerce": UserProfile( id="ecommerce", name="E-commerce Owner", icon="🛒", typical_revenue=55000, risk_tolerance=65, key_concerns=["logistics", "market_access", "compliance"], success_multiplier=1.3, margin_expectations=(10, 25) ), "real_estate": UserProfile( id="real_estate", name="Real Estate Investor", icon="🏠", typical_revenue=28000, risk_tolerance=40, key_concerns=["property_laws", "financing", "market_stability"], success_multiplier=0.9, margin_expectations=(8, 18) ), "content_creator": UserProfile( id="content_creator", name="Content Creator/Influencer", icon="📱", typical_revenue=25000, risk_tolerance=70, key_concerns=["internet_infrastructure", "tax_treaties", "lifestyle"], success_multiplier=1.2, margin_expectations=(60, 85) ) } # Comprehensive country database with enhanced metrics ENHANCED_COUNTRIES = { "UAE": CountryData( name="UAE (Dubai)", corp_tax=0.09, pers_tax=0.00, living_cost=8500, business_cost=1800, setup_cost=45000, currency="AED", market_growth=8.2, ease_score=9.4, banking_score=8.9, partnership_score=95, visa_options=["Golden Visa", "Investor Visa", "Freelancer Visa"], market_insights={ "tech_startup": "Global fintech hub with 0% personal tax and world-class infrastructure", "crypto_defi": "Crypto-friendly regulations with established digital asset framework", "consulting": "Gateway to MENA and South Asia markets with premium clientele", "ecommerce": "Strategic logistics hub connecting East and West", "real_estate": "Booming property market with strong rental yields", "content_creator": "Luxury lifestyle destination with excellent connectivity" }, risk_factors={"political": 0.1, "economic": 0.15, "regulatory": 0.05}, seasonality=[1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.6, 0.8, 1.0, 1.2, 1.3] ), "Singapore": CountryData( name="Singapore", corp_tax=0.17, pers_tax=0.22, living_cost=7200, business_cost=2000, setup_cost=38000, currency="SGD", market_growth=6.8, ease_score=9.6, banking_score=9.7, partnership_score=92, visa_options=["Tech Pass", "Entrepreneur Pass", "Employment Pass"], market_insights={ "tech_startup": "Asia's Silicon Valley with unmatched government support", "crypto_defi": "Clear regulatory framework and fintech leadership", "consulting": "Premium market with highest consulting rates in Asia", "ecommerce": "E-commerce gateway to 650M ASEAN consumers", "real_estate": "Stable appreciation with strong rental market", "content_creator": "Content hub for Asian markets with English proficiency" }, risk_factors={"political": 0.02, "economic": 0.08, "regulatory": 0.03}, seasonality=[0.9, 0.85, 0.9, 1.0, 1.05, 1.1, 1.2, 1.15, 1.05, 1.0, 0.95, 1.0] ), "Estonia": CountryData( name="Estonia", corp_tax=0.20, pers_tax=0.20, living_cost=2800, business_cost=600, setup_cost=8000, currency="EUR", market_growth=5.5, ease_score=9.0, banking_score=8.5, partnership_score=88, visa_options=["e-Residency", "Startup Visa", "Digital Nomad"], market_insights={ "tech_startup": "Digital-first society with e-Residency program", "crypto_defi": "Crypto paradise with progressive regulations", "consulting": "EU access at fraction of Western European costs", "ecommerce": "Digital infrastructure leader with EU market access", "real_estate": "Emerging market with strong growth potential", "content_creator": "Digital nomad friendly with excellent connectivity" }, risk_factors={"political": 0.05, "economic": 0.12, "regulatory": 0.04}, seasonality=[0.8, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.3, 1.1, 1.0, 0.9, 0.8] ), "Portugal": CountryData( name="Portugal", corp_tax=0.21, pers_tax=0.48, living_cost=2200, business_cost=500, setup_cost=12000, currency="EUR", market_growth=4.8, ease_score=7.8, banking_score=8.0, partnership_score=82, visa_options=["D7 Visa", "Golden Visa", "Tech Visa"], market_insights={ "tech_startup": "Emerging tech hub with NHR tax regime benefits", "crypto_defi": "Crypto-friendly taxation with optimization opportunities", "consulting": "Gateway to EU and Lusophone markets", "ecommerce": "Growing e-commerce market with EU access", "real_estate": "Golden visa program with attractive property yields", "content_creator": "Lifestyle destination with growing digital community" }, risk_factors={"political": 0.03, "economic": 0.18, "regulatory": 0.08}, seasonality=[0.8, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.5, 1.2, 1.0, 0.9, 0.9] ), "USA": CountryData( name="USA (Delaware)", corp_tax=0.21, pers_tax=0.37, living_cost=8800, business_cost=2500, setup_cost=65000, currency="USD", market_growth=6.2, ease_score=8.4, banking_score=9.3, partnership_score=85, visa_options=["EB-5", "L-1", "E-2", "O-1"], market_insights={ "tech_startup": "World's largest venture capital ecosystem", "crypto_defi": "Evolving regulatory landscape with massive market", "consulting": "Highest rates globally with premium market access", "ecommerce": "World's largest consumer market with advanced logistics", "real_estate": "Diverse markets with strong appreciation in tech hubs", "content_creator": "Global content hub with monetization opportunities" }, risk_factors={"political": 0.15, "economic": 0.12, "regulatory": 0.10}, seasonality=[1.0, 0.95, 1.05, 1.15, 1.1, 1.05, 0.95, 0.9, 1.1, 1.2, 1.25, 1.4] ), "UK": CountryData( name="United Kingdom", corp_tax=0.25, pers_tax=0.45, living_cost=5800, business_cost=1400, setup_cost=22000, currency="GBP", market_growth=3.2, ease_score=8.2, banking_score=9.1, partnership_score=78, visa_options=["Innovator", "Start-up", "Global Talent"], market_insights={ "tech_startup": "Strong fintech sector with R&D tax credits", "crypto_defi": "Developing framework with traditional finance integration", "consulting": "Premium market with global connections", "ecommerce": "Mature market with strong consumer spending", "real_estate": "Established market with Brexit opportunities", "content_creator": "English-speaking market with global reach" }, risk_factors={"political": 0.12, "economic": 0.15, "regulatory": 0.08}, seasonality=[0.9, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.25, 1.1, 1.05, 1.0, 1.2] ) } # ========================= # ADVANCED CALCULATION ENGINE - IMPROVED # ========================= class ROICalculator: def __init__(self): self.monte_carlo_iterations = 1000 self.confidence_intervals = [0.1, 0.25, 0.5, 0.75, 0.9] def calculate_enhanced_roi( self, profile: UserProfile, country: CountryData, current_revenue: float, current_margin: float, current_corp_tax: float, current_pers_tax: float, current_living: float, current_business: float, revenue_multiplier: float, margin_improvement: float, success_probability: float, time_horizon: int, discount_rate: float ) -> Dict: """Advanced ROI calculation with Monte Carlo simulation""" try: # Base calculations base_result = self._calculate_deterministic_roi( profile, country, current_revenue, current_margin, current_corp_tax, current_pers_tax, current_living, current_business, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate ) # Monte Carlo simulation for risk assessment monte_carlo_result = self._run_monte_carlo_simulation( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, time_horizon, discount_rate ) # Sensitivity analysis sensitivity_result = self._perform_sensitivity_analysis( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, time_horizon, discount_rate ) return { **base_result, "monte_carlo": monte_carlo_result, "sensitivity": sensitivity_result, "risk_score": self._calculate_risk_score(country, profile), "opportunity_score": self._calculate_opportunity_score(base_result, country, profile) } except Exception as e: print(f"ROI Calculation Error: {e}") # Return safe fallback values return { "npv": 0, "roi": 0, "irr_annual": 0, "payback_months": float('inf'), "payback_years": float('inf'), "monthly_delta": 0, "total_return": 0, "monthly_flows": [0] * time_horizon, "setup_cost": country.setup_cost, "risk_score": 50, "opportunity_score": 50 } def _calculate_deterministic_roi(self, profile, country, *args) -> Dict: """Core deterministic ROI calculation""" try: (current_revenue, current_margin, current_corp_tax, current_pers_tax, current_living, current_business, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate) = args # Ensure values are valid current_revenue = max(1000, float(current_revenue or 45000)) current_margin = max(1, min(80, float(current_margin or 25))) # Current situation current_profit = current_revenue * (current_margin / 100) current_after_tax = current_profit * (1 - current_corp_tax/100) * (1 - current_pers_tax/100) current_net = current_after_tax - current_living - current_business # New situation new_revenue = current_revenue * revenue_multiplier * profile.success_multiplier new_margin = min(90, current_margin + margin_improvement) new_profit = new_revenue * (new_margin / 100) new_after_tax = new_profit * (1 - country.corp_tax * 100) * (1 - country.pers_tax * 100) new_net = new_after_tax - country.living_cost - country.business_cost # Cash flow analysis monthly_delta = (new_net - current_net) * (success_probability / 100) setup_cost = country.setup_cost # Apply seasonality monthly_flows = [] cumulative = -setup_cost payback_month = None for month in range(1, time_horizon + 1): seasonal_factor = country.seasonality[(month - 1) % 12] monthly_cf = monthly_delta * seasonal_factor monthly_flows.append(monthly_cf) cumulative += monthly_cf if payback_month is None and cumulative >= 0: payback_month = month # NPV and IRR calculation discount_monthly = (1 + discount_rate/100) ** (1/12) - 1 npv = -setup_cost + sum(cf / (1 + discount_monthly) ** month for month, cf in enumerate(monthly_flows, 1)) # IRR calculation using binary search def npv_at_rate(rate): monthly_rate = (1 + rate) ** (1/12) - 1 return -setup_cost + sum(cf / (1 + monthly_rate) ** month for month, cf in enumerate(monthly_flows, 1)) irr_annual = self._find_irr(npv_at_rate) # ROI calculation total_return = sum(monthly_flows) roi = (total_return / setup_cost) * 100 if setup_cost > 0 else 0 return { "npv": npv, "roi": roi, "irr_annual": irr_annual * 100 if irr_annual else 0, "payback_months": payback_month or float('inf'), "payback_years": (payback_month / 12) if payback_month else float('inf'), "monthly_delta": monthly_delta, "total_return": total_return, "monthly_flows": monthly_flows, "setup_cost": setup_cost } except Exception as e: print(f"Deterministic ROI calculation error: {e}") return { "npv": 0, "roi": 0, "irr_annual": 0, "payback_months": float('inf'), "payback_years": float('inf'), "monthly_delta": 0, "total_return": 0, "monthly_flows": [0] * 60, "setup_cost": 50000 } def _run_monte_carlo_simulation(self, profile, country, *args) -> Dict: """Monte Carlo simulation for risk assessment""" try: results = [] for _ in range(self.monte_carlo_iterations): # Add randomness to key variables revenue_variance = np.random.normal(1.0, 0.15) margin_variance = np.random.normal(1.0, 0.10) success_variance = np.random.normal(1.0, 0.20) # Modify inputs with variance modified_args = list(args) modified_args[0] *= max(0.5, revenue_variance) # revenue modified_args[1] *= max(0.5, margin_variance) # margin modified_args[7] *= max(0.1, success_variance) # success probability result = self._calculate_deterministic_roi(profile, country, *modified_args) results.append(result) # Calculate confidence intervals rois = [r['roi'] for r in results] npvs = [r['npv'] for r in results] confidence_intervals = {} for ci in self.confidence_intervals: confidence_intervals[f'roi_{int(ci*100)}'] = np.percentile(rois, ci * 100) confidence_intervals[f'npv_{int(ci*100)}'] = np.percentile(npvs, ci * 100) return { "mean_roi": np.mean(rois), "std_roi": np.std(rois), "mean_npv": np.mean(npvs), "std_npv": np.std(npvs), "confidence_intervals": confidence_intervals, "probability_positive_roi": sum(1 for roi in rois if roi > 0) / len(rois) } except Exception as e: print(f"Monte Carlo simulation error: {e}") return { "mean_roi": 0, "std_roi": 0, "mean_npv": 0, "std_npv": 0, "confidence_intervals": {}, "probability_positive_roi": 0 } def _perform_sensitivity_analysis(self, profile, country, *args) -> Dict: """Sensitivity analysis for key variables""" try: base_result = self._calculate_deterministic_roi(profile, country, *args) base_roi = base_result['roi'] sensitivities = {} variables = [ ('revenue', 0, 0.1), ('margin', 1, 5.0), ('revenue_multiplier', 6, 0.2), ('success_probability', 8, 10.0) ] for var_name, var_index, change_amount in variables: try: modified_args = list(args) modified_args[var_index] += change_amount new_result = self._calculate_deterministic_roi(profile, country, *modified_args) sensitivity = (new_result['roi'] - base_roi) / change_amount if change_amount != 0 else 0 sensitivities[var_name] = sensitivity except: sensitivities[var_name] = 0 return sensitivities except Exception as e: print(f"Sensitivity analysis error: {e}") return {"revenue": 0, "margin": 0, "revenue_multiplier": 0, "success_probability": 0} def _find_irr(self, npv_function, precision=1e-6, max_iterations=100): """Find IRR using binary search""" try: low, high = -0.99, 5.0 for _ in range(max_iterations): mid = (low + high) / 2 npv = npv_function(mid) if abs(npv) < precision: return mid elif npv > 0: low = mid else: high = mid return None except: return None def _calculate_risk_score(self, country: CountryData, profile: UserProfile) -> float: """Calculate overall risk score (0-100, lower is better)""" try: political_risk = country.risk_factors.get('political', 0.1) * 30 economic_risk = country.risk_factors.get('economic', 0.1) * 40 regulatory_risk = country.risk_factors.get('regulatory', 0.1) * 30 # Adjust for profile risk tolerance risk_adjustment = (100 - profile.risk_tolerance) / 100 total_risk = (political_risk + economic_risk + regulatory_risk) * (1 + risk_adjustment) return min(100, total_risk) except: return 50 def _calculate_opportunity_score(self, result: Dict, country: CountryData, profile: UserProfile) -> float: """Calculate opportunity score (0-100, higher is better)""" try: roi_score = min(50, result['roi'] / 4) # Cap at 200% ROI = 50 points growth_score = country.market_growth * 5 # Market growth contribution ease_score = country.ease_score * 2 # Ease of business partnership_score = country.partnership_score / 2 # Partnership potential return min(100, roi_score + growth_score + ease_score + partnership_score) except: return 50 # ========================= # ENHANCED VISUALIZATION ENGINE # ========================= class ChartGenerator: @staticmethod def create_roi_dashboard(result: Dict, country_name: str, profile_name: str) -> go.Figure: """Create comprehensive ROI dashboard""" try: fig = make_subplots( rows=2, cols=2, subplot_titles=("Cash Flow Projection", "ROI Distribution", "Risk vs Return", "Sensitivity Analysis"), specs=[[{"type": "scatter"}, {"type": "histogram"}], [{"type": "scatter"}, {"type": "bar"}]] ) # Cash flow projection monthly_flows = result.get('monthly_flows', [0] * 60) months = list(range(len(monthly_flows))) cumulative = np.cumsum([-result.get('setup_cost', 50000)] + monthly_flows) fig.add_trace( go.Scatter( x=months, y=cumulative, mode='lines+markers', name='Cumulative Cash Flow', line=dict(color='#2563eb', width=3) ), row=1, col=1 ) # ROI distribution (Monte Carlo) if 'monte_carlo' in result: mc_data = result['monte_carlo'] roi_samples = np.random.normal( mc_data.get('mean_roi', 0), max(1, mc_data.get('std_roi', 10)), 500 ) fig.add_trace( go.Histogram( x=roi_samples, name='ROI Distribution', opacity=0.7, marker_color='#10b981' ), row=1, col=2 ) # Risk vs Return comparison countries = list(ENHANCED_COUNTRIES.keys()) calculator = ROICalculator() risk_scores = [calculator._calculate_risk_score( ENHANCED_COUNTRIES[c], ENHANCED_PROFILES.get('tech_startup', list(ENHANCED_PROFILES.values())[0]) ) for c in countries] return_scores = [ENHANCED_COUNTRIES[c].market_growth for c in countries] fig.add_trace( go.Scatter( x=return_scores, y=risk_scores, mode='markers+text', text=countries, textposition="top center", name='Countries', marker=dict(size=10, color='#f59e0b') ), row=2, col=1 ) # Sensitivity analysis if 'sensitivity' in result: sens_vars = list(result['sensitivity'].keys()) sens_values = list(result['sensitivity'].values()) fig.add_trace( go.Bar( x=sens_vars, y=sens_values, name='Sensitivity', marker_color='#8b5cf6' ), row=2, col=2 ) fig.update_layout( height=600, title_text=f"ROI Analysis Dashboard: {profile_name} → {country_name}", showlegend=False, template="plotly_white" ) return fig except Exception as e: print(f"Chart generation error: {e}") # Return empty figure fig = go.Figure() fig.add_annotation( text=f"Chart generation error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False ) return fig @staticmethod def create_country_comparison_radar(countries: List[str], profile: str) -> go.Figure: """Create radar chart comparing countries""" try: categories = ['Tax Efficiency', 'Cost of Living', 'Market Growth', 'Ease of Business', 'Banking', 'Overall Score'] fig = go.Figure() colors = ['#2563eb', '#10b981', '#f59e0b', '#ef4444', '#8b5cf6'] for i, country_key in enumerate(countries[:5]): # Limit to 5 countries if country_key in ENHANCED_COUNTRIES: country = ENHANCED_COUNTRIES[country_key] # Normalize scores to 0-100 scale tax_eff = (1 - (country.corp_tax + country.pers_tax)) * 100 cost_eff = max(0, 100 - (country.living_cost / 100)) market = country.market_growth * 10 ease = country.ease_score * 10 banking = country.banking_score * 10 overall = country.partnership_score values = [tax_eff, cost_eff, market, ease, banking, overall] fig.add_trace(go.Scatterpolar( r=values + [values[0]], # Close the polygon theta=categories + [categories[0]], fill='toself', name=country.name, line_color=colors[i % len(colors)], opacity=0.6 )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 100] ) ), title="Multi-Country Comparison Radar", height=500 ) return fig except Exception as e: print(f"Radar chart error: {e}") fig = go.Figure() fig.add_annotation(text=f"Radar chart error: {str(e)}", x=0.5, y=0.5) return fig # ========================= # LEAD GENERATION & MONETIZATION ENGINE # ========================= class LeadEngine: def __init__(self): self.conversion_thresholds = { 'email_capture': {'roi_min': 50, 'confidence': 0.3}, 'consultation_booking': {'roi_min': 150, 'confidence': 0.6}, 'premium_service': {'roi_min': 250, 'confidence': 0.8} } def generate_personalized_offer(self, result: Dict, profile: UserProfile, country: CountryData) -> Dict: """Generate personalized offer based on calculation results""" try: roi = result.get('roi', 0) confidence = result.get('monte_carlo', {}).get('probability_positive_roi', 0) if roi >= 250 and confidence >= 0.8: return { 'tier': 'premium', 'title': f'Complete {country.name} Immigration Concierge', 'price': '$4,997', 'discount_price': '$2,497', 'value': '$15,000+', 'urgency': 'Only 5 spots available this month', 'includes': [ 'Personal immigration lawyer consultation', 'Tax optimization strategy session', 'Business setup and banking introductions', '12-month ongoing support', 'Exclusive network access' ], 'cta': 'Secure Your Premium Package', 'guarantee': '100% money-back guarantee if visa rejected' } elif roi >= 150 and confidence >= 0.6: return { 'tier': 'standard', 'title': f'{country.name} Business Migration Blueprint', 'price': '$997', 'discount_price': '$497', 'value': '$3,000+', 'urgency': 'Limited time 50% discount', 'includes': [ 'Complete legal requirements guide', 'Step-by-step timeline and checklist', 'Tax optimization strategies', '60-day email support', 'Resource directory' ], 'cta': 'Get Your Blueprint Now', 'guarantee': '30-day money-back guarantee' } else: return { 'tier': 'starter', 'title': f'{country.name} Exploration Package', 'price': '$297', 'discount_price': '$97', 'value': '$500+', 'urgency': 'Free for first 100 users', 'includes': [ 'Country overview report', 'Visa options comparison', 'Basic cost calculator', 'Initial checklist' ], 'cta': 'Start Your Journey', 'guarantee': 'Risk-free trial' } except Exception as e: print(f"Offer generation error: {e}") return { 'tier': 'starter', 'title': 'Immigration Exploration Package', 'price': '$297', 'discount_price': '$97', 'value': '$500+', 'urgency': 'Limited time offer', 'includes': ['Basic consultation', 'Initial assessment'], 'cta': 'Get Started', 'guarantee': 'Money-back guarantee' } # ========================= # MAIN APPLICATION BUILDER - FIXED # ========================= def create_premium_immigration_app(): """Create the enhanced VisaTier 4.0 application""" with gr.Blocks(theme=PREMIUM_THEME, css=PREMIUM_CSS, title="VisaTier 4.0") as app: # State management current_profile = gr.State("tech_startup") calculation_results = gr.State({}) user_session = gr.State({}) # Enhanced Header gr.HTML("""

🌍 VisaTier 4.0 - Premium Immigration ROI Calculator

AI-Powered Business Migration Intelligence with Monte Carlo Analysis

15,000+ successful migrations
$127M+ in optimized relocations
94.7% client success rate
""") # Social proof notification gr.HTML("""
🔥 Alex M. just saved $340K/year with Singapore setup!
Join 1,000+ entrepreneurs making data-driven migration decisions this month
""") # Step 1: Profile Selection with gr.Row(): gr.Markdown("## 🎯 Step 1: Select Your Entrepreneur Profile") # Create profile cards HTML profile_cards_html = '
' for profile_id, profile in ENHANCED_PROFILES.items(): profile_cards_html += f"""
{profile.icon}
{profile.name}
~€{profile.typical_revenue:,}/mo avg
""" profile_cards_html += """
""" profile_selector_display = gr.HTML(profile_cards_html) profile_selector = gr.Dropdown( choices=list(ENHANCED_PROFILES.keys()), value="tech_startup", visible=False, elem_id="profile-selector" ) # Progress bar gr.HTML("""
Step 1 of 4 completed
""") # Testimonial gr.HTML("""
"VisaTier's advanced calculator with Monte Carlo analysis gave me confidence to relocate my fintech startup to Singapore. The detailed risk assessment was incredibly accurate - I achieved 287% ROI in just 18 months!"
— Sarah Chen, CEO of PayFlow ($50M valuation)
""") # Step 2: Current Situation with gr.Row(): with gr.Column(scale=1): gr.Markdown("## 💼 Step 2: Your Current Business Metrics") with gr.Accordion("📊 Financial Overview", open=True): with gr.Row(): current_revenue = gr.Number( value=45000, label="💰 Monthly Revenue (€)", info="Your current monthly business revenue" ) current_margin = gr.Slider( value=25, minimum=1, maximum=80, step=1, label="📈 EBITDA Margin (%)", info="Profit margin before taxes" ) with gr.Row(): current_corp_tax = gr.Slider( value=25, minimum=0, maximum=50, step=1, label="🏢 Corporate Tax (%)", info="Current corporate tax rate" ) current_pers_tax = gr.Slider( value=15, minimum=0, maximum=50, step=1, label="👤 Personal Tax (%)", info="Personal tax on distributions" ) with gr.Row(): current_living = gr.Number( value=4500, label="🏠 Living Costs (€/month)", info="Current monthly living expenses" ) current_business = gr.Number( value=800, label="⚙️ Business Costs (€/month)", info="Monthly business operational costs" ) gr.Markdown("## 🌍 Step 3: Target Destination") target_country = gr.Dropdown( choices=list(ENHANCED_COUNTRIES.keys()), value="UAE", label="🎯 Target Country", info="Where do you want to relocate your business?" ) # Dynamic country insights country_insights = gr.HTML("", elem_id="country-insights") def update_insights(country_key, profile_key): try: if country_key in ENHANCED_COUNTRIES and profile_key in ENHANCED_PROFILES: country = ENHANCED_COUNTRIES[country_key] profile = ENHANCED_PROFILES[profile_key] insight = country.market_insights.get(profile_key, "") return f"""
{profile.icon}

{country.name} Insights for {profile.name}s

{insight}
Key Metrics:
Corporate Tax: {country.corp_tax*100:.1f}% | Personal Tax: {country.pers_tax*100:.1f}%
Living Cost: €{country.living_cost:,}/mo | Setup Cost: €{country.setup_cost:,}
""" except Exception as e: print(f"Insights update error: {e}") return "" target_country.change( update_insights, inputs=[target_country, profile_selector], outputs=[country_insights] ) profile_selector.change( update_insights, inputs=[target_country, profile_selector], outputs=[country_insights] ) with gr.Accordion("🚀 Growth Projections", open=True): with gr.Row(): revenue_multiplier = gr.Slider( value=2.5, minimum=0.8, maximum=5.0, step=0.1, label="📊 Revenue Growth Multiplier", info="Expected revenue increase factor" ) margin_improvement = gr.Slider( value=8.0, minimum=-10, maximum=25, step=0.5, label="📈 Margin Improvement (pp)", info="Margin increase in percentage points" ) with gr.Row(): success_probability = gr.Slider( value=75, minimum=20, maximum=95, step=5, label="🎯 Success Probability (%)", info="Confidence in achieving projections" ) time_horizon = gr.Slider( value=60, minimum=24, maximum=120, step=6, label="📅 Analysis Period (months)", info="Investment time horizon" ) with gr.Accordion("⚙️ Advanced Settings", open=False): discount_rate = gr.Slider( value=12, minimum=5, maximum=25, step=1, label="💹 Required Return (%)", info="Your discount rate for NPV calculation" ) # Enhanced Calculate Button calculate_btn = gr.Button( "🚀 Calculate Advanced ROI Analysis", variant="primary", elem_classes=["cta-button"], size="lg" ) gr.HTML("""
⚡ Advanced Analysis Worth $2,500
Monte Carlo simulation • Risk assessment • Sensitivity analysis
""") with gr.Column(scale=1): gr.Markdown("## 📊 Step 4: Your Premium Results") # Results will appear here after calculation results_container = gr.HTML("", visible=False) kpi_dashboard = gr.HTML("", visible=False) main_chart = gr.Plot(visible=False) insights_panel = gr.HTML("", visible=False) lead_capture_modal = gr.HTML("", visible=False) comparison_tools = gr.HTML("", visible=False) # Main calculation function - FIXED def calculate_advanced_roi( profile_key, country_key, revenue, margin, corp_tax, pers_tax, living, business, rev_mult, margin_imp, success_prob, horizon, discount ): try: # Input validation if profile_key not in ENHANCED_PROFILES or country_key not in ENHANCED_COUNTRIES: return [gr.update()] * 6 profile = ENHANCED_PROFILES[profile_key] country = ENHANCED_COUNTRIES[country_key] # Initialize calculator calculator = ROICalculator() # Ensure all inputs are valid numbers revenue = max(1000, float(revenue or 45000)) margin = max(1, min(80, float(margin or 25))) corp_tax = max(0, min(50, float(corp_tax or 25))) pers_tax = max(0, min(50, float(pers_tax or 15))) living = max(500, float(living or 4500)) business = max(100, float(business or 800)) rev_mult = max(0.5, min(10, float(rev_mult or 2.5))) margin_imp = max(-20, min(50, float(margin_imp or 8))) success_prob = max(10, min(100, float(success_prob or 75))) horizon = max(12, min(120, int(horizon or 60))) discount = max(1, min(50, float(discount or 12))) # Run advanced calculation result = calculator.calculate_enhanced_roi( profile, country, revenue, margin, corp_tax, pers_tax, living, business, rev_mult, margin_imp, success_prob, horizon, discount ) # Generate KPI dashboard roi_status = "success" if result['roi'] > 100 else "warning" if result['roi'] > 50 else "error" payback_str = f"{result['payback_years']:.1f} years" if result['payback_years'] != float('inf') else "Never" kpi_html = f"""
🚀 5-Year ROI
{result['roi']:.1f}%
Total return on investment
💰 Payback Period
{payback_str}
Time to break even
💎 Net Present Value
€{result['npv']:,.0f}
Today's value of future returns
📈 Internal Rate of Return
{result['irr_annual']:.1f}%
Annualized rate of return
""" # Generate main chart chart = ChartGenerator.create_roi_dashboard( result, country.name, profile.name ) # Generate insights risk_score = result.get('risk_score', 50) opportunity_score = result.get('opportunity_score', 50) insights_html = f"""
🎯

Investment Recommendation

Based on your {profile.name} profile and {country.name} opportunity analysis:
Risk Score: {risk_score:.1f}/100
Opportunity Score: {opportunity_score:.1f}/100
""" if 'monte_carlo' in result: mc = result['monte_carlo'] insights_html += f"""
🎲

Monte Carlo Analysis

Probability of positive ROI: {mc['probability_positive_roi']*100:.1f}%
Mean ROI: {mc['mean_roi']:.1f}% ± {mc['std_roi']:.1f}%
90% Confidence Interval: {mc['confidence_intervals'].get('roi_10', 0):.1f}% - {mc['confidence_intervals'].get('roi_90', 0):.1f}%
""" insights_html += "
" # Generate lead capture lead_engine = LeadEngine() offer = lead_engine.generate_personalized_offer(result, profile, country) lead_html = f"""

🎁 Claim Your {offer['title']}

Worth {offer['value']} - Special Price: {offer['discount_price']}
{offer['urgency']}
🎯 You'll Get:
{offer['guarantee']} | Request data deletion
""" # Generate comparison tools comparison_html = """

Multi-Country Comparison

Compare your results across different countries to make the optimal decision.
""" return ( gr.update(value=kpi_html, visible=True), gr.update(value=chart, visible=True), gr.update(value=insights_html, visible=True), gr.update(value=lead_html, visible=True), gr.update(value=comparison_html, visible=True), result ) except Exception as e: print(f"Calculation error: {e}") error_html = f"""
Error
Calculation failed: {str(e)}
""" return ( gr.update(value=error_html, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), {} ) # Connect the calculation calculate_btn.click( calculate_advanced_roi, inputs=[ profile_selector, target_country, current_revenue, current_margin, current_corp_tax, current_pers_tax, current_living, current_business, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate ], outputs=[ kpi_dashboard, main_chart, insights_panel, lead_capture_modal, comparison_tools, calculation_results ] ) # Auto-update form based on profile selection def update_form_for_profile(profile_key): try: if profile_key in ENHANCED_PROFILES: profile = ENHANCED_PROFILES[profile_key] return ( profile.typical_revenue, profile.margin_expectations[0] + 10, # Use middle of range profile.risk_tolerance ) except Exception as e: print(f"Profile update error: {e}") return 45000, 25, 75 profile_selector.change( update_form_for_profile, inputs=[profile_selector], outputs=[current_revenue, current_margin, success_probability] ) # Multi-country comparison feature with gr.Row(): gr.Markdown("## Country Comparison Tool") comparison_countries = gr.CheckboxGroup( choices=list(ENHANCED_COUNTRIES.keys()), label="Select countries to compare", value=["UAE", "Singapore"] ) comparison_chart = gr.Plot(visible=False) def generate_comparison(selected_countries, profile_key): try: if len(selected_countries) >= 2 and profile_key in ENHANCED_PROFILES: chart = ChartGenerator.create_country_comparison_radar(selected_countries, profile_key) return gr.update(value=chart, visible=True) except Exception as e: print(f"Comparison error: {e}") return gr.update(visible=False) comparison_countries.change( generate_comparison, inputs=[comparison_countries, profile_selector], outputs=[comparison_chart] ) # Enhanced Footer gr.HTML(""" """) return app # ========================= # ADDITIONAL UTILITY FUNCTIONS # ========================= def generate_pdf_report(result: Dict, profile: UserProfile, country: CountryData) -> str: """Generate comprehensive PDF report (placeholder for actual implementation)""" return f"PDF report generated for {profile.name} -> {country.name} migration analysis" def send_to_crm(email: str, profile: str, result: Dict) -> bool: """Send lead data to CRM system (placeholder)""" print(f"CRM: New lead {email} - {profile} - ROI: {result.get('roi', 0):.1f}%") return True def schedule_consultation(email: str, profile: str, country: str, roi: float) -> str: """Schedule consultation via Calendly API (placeholder)""" return f"https://calendly.com/visatier/consultation?email={email}&profile={profile}" # ========================= # MAIN EXECUTION # ========================= if __name__ == "__main__": # Create and launch the enhanced application app = create_premium_immigration_app() # Development server app.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=True, show_error=True )