File size: 120,490 Bytes
6642d6b 948c176 6642d6b 7ac16f9 6642d6b 7ac16f9 6642d6b 948c176 a5dd728 6642d6b a5dd728 6642d6b 93cfee2 6642d6b 337baf4 6642d6b a5dd728 6642d6b 93cfee2 6642d6b a5dd728 93cfee2 6642d6b a5dd728 6642d6b a5dd728 6642d6b 56d1b29 6642d6b a5dd728 6642d6b a5dd728 6642d6b 56d1b29 6642d6b 56d1b29 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b 56d1b29 a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b 93cfee2 6642d6b 93cfee2 6642d6b a5dd728 6642d6b 93cfee2 6642d6b a5dd728 6642d6b 93cfee2 56d1b29 a5dd728 6642d6b a5dd728 56d1b29 a5dd728 6642d6b 337baf4 6642d6b 337baf4 6642d6b 93cfee2 56d1b29 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 56d1b29 a5dd728 6642d6b 56d1b29 a5dd728 6642d6b 337baf4 6642d6b 56d1b29 93cfee2 a5dd728 6642d6b a5dd728 93cfee2 a5dd728 6642d6b a5dd728 bfc53ca a5dd728 337baf4 948c176 6642d6b 93cfee2 db5e252 6642d6b 337baf4 6642d6b a5dd728 db5e252 6642d6b a5dd728 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b db5e252 6642d6b 337baf4 6642d6b a5dd728 db5e252 6642d6b db5e252 6642d6b 337baf4 6642d6b 337baf4 a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b db5e252 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b 337baf4 6642d6b 337baf4 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b a5dd728 db5e252 6642d6b 7ac16f9 948c176 6642d6b a5dd728 948c176 6642d6b 6c392da 6642d6b 6c392da a5dd728 6642d6b a5dd728 6642d6b 337baf4 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b 6c392da a5dd728 6c392da 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6642d6b a5dd728 6c392da e89de8f 6642d6b e89de8f 6642d6b 337baf4 04db6fc 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b a5dd728 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 948c176 7ac16f9 6642d6b 7ac16f9 948c176 6642d6b a5dd728 6642d6b a5dd728 6642d6b 04db6fc 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b a5dd728 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b a5dd728 6642d6b dbda5e6 6642d6b dbda5e6 6642d6b 446eb34 6642d6b dbda5e6 337baf4 6642d6b 337baf4 6642d6b 337baf4 6642d6b dbda5e6 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 04db6fc 6642d6b 7ac16f9 dbda5e6 6642d6b dbda5e6 6642d6b 7ac16f9 6642d6b dbda5e6 7ac16f9 dbda5e6 a5dd728 8cb4997 dbda5e6 6642d6b dbda5e6 8cb4997 6642d6b dbda5e6 6642d6b dbda5e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 |
# VisaTier 5.0 - Enhanced Immigration ROI Calculator
# Advanced AI-powered business migration intelligence with personalized insights
import math
import numpy as np
import pandas as pd
import gradio as gr
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import json
from datetime import datetime, timedelta
import hashlib
import secrets
from typing import Dict, List, Tuple, Optional
import asyncio
from dataclasses import dataclass, field
import random
# =========================
# ENHANCED STYLING SYSTEM
# =========================
PREMIUM_CSS = """
/* Modern Design System - Enhanced */
:root {
--primary: #2563eb;
--primary-dark: #1d4ed8;
--secondary: #0f172a;
--accent: #f59e0b;
--success: #10b981;
--warning: #f59e0b;
--error: #ef4444;
--surface: #ffffff;
--surface-alt: #f8fafc;
--text: #1e293b;
--text-muted: #64748b;
--border: #e2e8f0;
--radius: 12px;
--shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);
--gradient: linear-gradient(135deg, var(--primary) 0%, var(--primary-dark) 100%);
--gradient-gold: linear-gradient(135deg, #fbbf24 0%, #f59e0b 100%);
}
/* Enhanced Global Styles */
.gradio-container {
max-width: 1400px !important;
margin: 0 auto !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
/* Premium Header with Animation */
.premium-header {
background: var(--gradient);
color: white;
padding: 3rem 2rem;
border-radius: var(--radius);
margin-bottom: 2rem;
position: relative;
overflow: hidden;
}
.premium-header::before {
content: '';
position: absolute;
top: -50%;
right: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%);
animation: float 8s ease-in-out infinite;
}
@keyframes float {
0%, 100% { transform: translateY(0px) rotate(0deg); }
50% { transform: translateY(-30px) rotate(180deg); }
}
.header-content {
position: relative;
z-index: 2;
display: flex;
justify-content: space-between;
align-items: center;
flex-wrap: wrap;
gap: 2rem;
}
.header-title {
font-size: 2.5rem;
font-weight: 800;
margin-bottom: 1rem;
text-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.header-subtitle {
opacity: 0.9;
font-size: 1.2rem;
font-weight: 400;
}
.header-stats {
text-align: right;
font-size: 1rem;
opacity: 0.9;
}
/* Enhanced Profile Cards */
.profile-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
gap: 1.5rem;
margin: 2rem 0;
}
.profile-card {
background: var(--surface);
border: 2px solid var(--border);
border-radius: var(--radius);
padding: 2rem;
text-align: center;
cursor: pointer;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1);
position: relative;
overflow: hidden;
box-shadow: var(--shadow);
}
.profile-card::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent);
transition: left 0.5s;
}
.profile-card:hover::before {
left: 100%;
}
.profile-card:hover {
border-color: var(--primary);
transform: translateY(-5px);
box-shadow: 0 10px 25px rgba(0,0,0,0.15);
}
.profile-card.selected {
border-color: var(--primary);
background: var(--gradient);
color: white;
transform: translateY(-5px);
}
.profile-icon {
font-size: 3rem;
margin-bottom: 1rem;
display: block;
}
.profile-name {
font-weight: 700;
font-size: 1.2rem;
margin-bottom: 0.5rem;
}
.profile-revenue {
font-size: 1rem;
opacity: 0.8;
font-weight: 500;
}
.profile-description {
font-size: 0.9rem;
opacity: 0.7;
margin-top: 0.5rem;
line-height: 1.4;
}
/* Enhanced KPI Cards */
.kpi-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr));
gap: 2rem;
margin: 2rem 0;
}
.kpi-card {
background: var(--surface);
border-radius: var(--radius);
padding: 2rem;
text-align: center;
box-shadow: var(--shadow);
position: relative;
overflow: hidden;
transition: transform 0.2s ease;
}
.kpi-card:hover {
transform: translateY(-3px);
}
.kpi-card::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 4px;
background: var(--gradient);
}
.kpi-label {
font-size: 1rem;
color: var(--text-muted);
margin-bottom: 0.5rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.5px;
}
.kpi-value {
font-size: 2.5rem;
font-weight: 800;
color: var(--primary);
margin-bottom: 0.5rem;
}
.kpi-note {
font-size: 0.9rem;
color: var(--text-muted);
line-height: 1.4;
}
.kpi-card.success .kpi-value { color: var(--success); }
.kpi-card.warning .kpi-value { color: var(--warning); }
.kpi-card.error .kpi-value { color: var(--error); }
/* AI Insight Cards */
.ai-insights-grid {
display: grid;
gap: 1.5rem;
margin: 2rem 0;
}
.ai-insight-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: var(--radius);
padding: 2rem;
box-shadow: var(--shadow);
position: relative;
overflow: hidden;
}
.ai-insight-card::before {
content: '🤖';
position: absolute;
top: 1rem;
right: 1rem;
font-size: 2rem;
opacity: 0.3;
}
.ai-insight-header {
display: flex;
align-items: center;
margin-bottom: 1rem;
}
.ai-insight-icon {
font-size: 1.5rem;
margin-right: 0.75rem;
}
.ai-insight-title {
font-weight: 700;
font-size: 1.2rem;
margin: 0;
}
.ai-insight-description {
line-height: 1.6;
margin-bottom: 1rem;
font-size: 1rem;
}
.ai-confidence {
background: rgba(255,255,255,0.2);
padding: 0.5rem 1rem;
border-radius: 20px;
display: inline-block;
font-size: 0.9rem;
font-weight: 600;
}
/* Country Comparison Enhanced */
.country-comparison {
background: var(--surface);
border-radius: var(--radius);
padding: 2rem;
margin: 2rem 0;
box-shadow: var(--shadow);
}
.comparison-table {
width: 100%;
border-collapse: collapse;
margin-top: 1rem;
}
.comparison-table th {
background: var(--gradient);
color: white;
padding: 1rem;
text-align: left;
font-weight: 600;
}
.comparison-table td {
padding: 1rem;
border-bottom: 1px solid var(--border);
}
.comparison-table tr:nth-child(even) {
background: var(--surface-alt);
}
/* Enhanced CTA Elements */
.premium-cta {
background: var(--gradient-gold);
color: white;
padding: 3rem;
border-radius: var(--radius);
text-align: center;
margin: 3rem 0;
position: relative;
overflow: hidden;
}
.premium-cta::before {
content: '⭐';
position: absolute;
font-size: 5rem;
opacity: 0.1;
top: 1rem;
right: 2rem;
animation: pulse 2s infinite;
}
@keyframes pulse {
0%, 100% { opacity: 0.1; transform: scale(1); }
50% { opacity: 0.3; transform: scale(1.1); }
}
.cta-title {
font-size: 2rem;
font-weight: 800;
margin-bottom: 1rem;
}
.cta-subtitle {
font-size: 1.2rem;
opacity: 0.9;
margin-bottom: 2rem;
}
.cta-button-enhanced {
background: white !important;
color: var(--primary) !important;
border: none !important;
border-radius: 50px !important;
padding: 1rem 3rem !important;
font-weight: 700 !important;
font-size: 1.1rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
text-decoration: none !important;
display: inline-block !important;
box-shadow: 0 4px 15px rgba(0,0,0,0.2) !important;
}
.cta-button-enhanced:hover {
transform: translateY(-3px) !important;
box-shadow: 0 8px 25px rgba(0,0,0,0.3) !important;
}
/* Real-time notifications */
.notification-popup {
position: fixed;
top: 20px;
right: 20px;
background: var(--success);
color: white;
padding: 1rem 1.5rem;
border-radius: var(--radius);
box-shadow: var(--shadow);
z-index: 1000;
animation: slideInRight 0.5s ease, fadeOut 0.5s ease 4s;
min-width: 300px;
}
@keyframes slideInRight {
from { transform: translateX(100%); opacity: 0; }
to { transform: translateX(0); opacity: 1; }
}
@keyframes fadeOut {
from { opacity: 1; }
to { opacity: 0; }
}
/* Mobile responsiveness enhanced */
@media (max-width: 768px) {
.header-title { font-size: 2rem; }
.profile-grid { grid-template-columns: 1fr; }
.kpi-grid { grid-template-columns: 1fr; }
.header-content { flex-direction: column; text-align: center; }
.premium-header { padding: 2rem 1rem; }
}
/* Loading states */
.loading-spinner {
border: 3px solid var(--border);
border-top: 3px solid var(--primary);
border-radius: 50%;
width: 40px;
height: 40px;
animation: spin 1s linear infinite;
margin: 2rem auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
"""
PREMIUM_THEME = gr.themes.Soft(
primary_hue="blue",
secondary_hue="slate",
neutral_hue="slate"
).set(
body_background_fill="#f8fafc",
body_text_color="#1e293b",
button_primary_background_fill="#2563eb",
button_primary_background_fill_hover="#1d4ed8",
input_background_fill="#ffffff",
input_border_width="2px",
block_background_fill="#ffffff",
block_radius="12px"
)
# =========================
# ENHANCED DATA MODELS WITH AI
# =========================
@dataclass
class UserProfile:
id: str
name: str
icon: str
typical_revenue: float
risk_tolerance: int
key_concerns: List[str]
success_multiplier: float
margin_expectations: Tuple[float, float]
description: str
ai_persona: str # AI personality for insights
@dataclass
class CountryData:
name: str
corp_tax: float
pers_tax: float
living_cost: float
business_cost: float
setup_cost: float
currency: str
market_growth: float
ease_score: float
banking_score: float
partnership_score: float
visa_options: List[str]
market_insights: Dict[str, str]
risk_factors: Dict[str, float]
seasonality: List[float]
special_programs: List[str]
recent_changes: str
ai_sentiment: float # Market sentiment score
# Enhanced user profiles with detailed personas
ENHANCED_PROFILES = {
"tech_startup": UserProfile(
id="tech_startup",
name="Tech Startup Founder",
icon="🚀",
typical_revenue=65000,
risk_tolerance=85,
key_concerns=["talent_access", "ip_protection", "scaling", "funding"],
success_multiplier=1.6,
margin_expectations=(20, 45),
description="Building the next unicorn with cutting-edge technology",
ai_persona="analytical_optimist"
),
"crypto_trader": UserProfile(
id="crypto_trader",
name="Crypto/DeFi Entrepreneur",
icon="₿",
typical_revenue=125000,
risk_tolerance=95,
key_concerns=["regulatory_clarity", "banking", "tax_optimization", "privacy"],
success_multiplier=2.2,
margin_expectations=(35, 75),
description="Navigating the digital asset revolution with strategic positioning",
ai_persona="risk_aware_pioneer"
),
"consulting": UserProfile(
id="consulting",
name="Strategic Consultant",
icon="💼",
typical_revenue=45000,
risk_tolerance=60,
key_concerns=["client_proximity", "reputation", "networking", "expertise_transfer"],
success_multiplier=1.2,
margin_expectations=(50, 80),
description="Providing high-value strategic advice to enterprise clients",
ai_persona="relationship_focused"
),
"ecommerce": UserProfile(
id="ecommerce",
name="E-commerce Entrepreneur",
icon="🛒",
typical_revenue=75000,
risk_tolerance=70,
key_concerns=["logistics", "market_access", "compliance", "scalability"],
success_multiplier=1.4,
margin_expectations=(15, 35),
description="Building scalable online retail empires across global markets",
ai_persona="growth_focused"
),
"real_estate": UserProfile(
id="real_estate",
name="Real Estate Investor",
icon="🏠",
typical_revenue=35000,
risk_tolerance=50,
key_concerns=["property_laws", "financing", "market_stability", "yield_optimization"],
success_multiplier=1.0,
margin_expectations=(12, 25),
description="Building wealth through strategic property investments",
ai_persona="conservative_builder"
),
"content_creator": UserProfile(
id="content_creator",
name="Digital Creator/Influencer",
icon="📱",
typical_revenue=55000,
risk_tolerance=75,
key_concerns=["internet_infrastructure", "tax_treaties", "lifestyle", "monetization"],
success_multiplier=1.3,
margin_expectations=(65, 90),
description="Monetizing creativity and building personal brand globally",
ai_persona="lifestyle_optimizer"
)
}
# Comprehensive and accurate country database
ENHANCED_COUNTRIES = {
"UAE": CountryData(
name="UAE (Dubai/Abu Dhabi)",
corp_tax=0.09, # Introduced in 2023 for companies >3.75M AED
pers_tax=0.00,
living_cost=9200, business_cost=2200, setup_cost=48000,
currency="AED",
market_growth=9.1, ease_score=9.6, banking_score=9.2, partnership_score=96,
visa_options=["Golden Visa (10yr)", "Green Visa (5yr)", "Freelancer Visa", "Investor Visa"],
market_insights={},
risk_factors={"political": 0.08, "economic": 0.12, "regulatory": 0.06},
seasonality=[1.2, 1.1, 1.0, 0.9, 0.7, 0.6, 0.5, 0.6, 0.9, 1.1, 1.3, 1.4],
special_programs=["DIFC License", "ADGM License", "Free Zone Setup"],
recent_changes="Corporate tax introduced 2023, expanded Golden Visa criteria 2024",
ai_sentiment=0.92
),
"Singapore": CountryData(
name="Singapore",
corp_tax=0.17, # With exemptions, effective can be lower
pers_tax=0.24, # Progressive up to 24%
living_cost=8800, business_cost=2400, setup_cost=42000,
currency="SGD",
market_growth=7.2, ease_score=9.8, banking_score=9.8, partnership_score=94,
visa_options=["Tech.Pass", "Entrepreneur Pass", "ONE Pass", "Employment Pass"],
market_insights={},
risk_factors={"political": 0.02, "economic": 0.08, "regulatory": 0.04},
seasonality=[0.9, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.25, 1.1, 1.0, 0.95, 1.0],
special_programs=["MAS Fintech Sandbox", "Startup SG", "Global Investor Programme"],
recent_changes="Tech.Pass launched 2024, enhanced startup ecosystem support",
ai_sentiment=0.89
),
"Portugal": CountryData(
name="Portugal",
corp_tax=0.21, # Plus municipal surcharge
pers_tax=0.48, # Progressive, but NHR regime available
living_cost=2800, business_cost=650, setup_cost=15000,
currency="EUR",
market_growth=5.4, ease_score=8.2, banking_score=8.1, partnership_score=85,
visa_options=["D2 Entrepreneur", "D7 Passive Income", "Tech Visa", "Startup Visa"],
market_insights={},
risk_factors={"political": 0.06, "economic": 0.18, "regulatory": 0.09},
seasonality=[0.8, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.6, 1.3, 1.1, 0.9, 0.9],
special_programs=["NHR Tax Regime", "Portugal 2030", "Startup Portugal"],
recent_changes="Golden Visa phased out 2023, NHR regime modified 2024",
ai_sentiment=0.76
),
"Spain": CountryData(
name="Spain",
corp_tax=0.25, # Reduced rates for startups
pers_tax=0.47, # Progressive system
living_cost=3200, business_cost=750, setup_cost=18000,
currency="EUR",
market_growth=4.8, ease_score=7.9, banking_score=8.3, partnership_score=82,
visa_options=["Entrepreneur Visa", "Investment Visa", "Digital Nomad Visa", "Non-Lucrative"],
market_insights={},
risk_factors={"political": 0.08, "economic": 0.22, "regulatory": 0.12},
seasonality=[0.8, 0.8, 0.9, 1.1, 1.4, 1.6, 1.8, 1.7, 1.4, 1.2, 0.9, 0.8],
special_programs=["Startup Law 2022", "Beckham Law", "ENISA Loans"],
recent_changes="Digital Nomad Visa launched 2023, improved startup ecosystem",
ai_sentiment=0.78
),
"USA": CountryData(
name="USA (Delaware/Florida)",
corp_tax=0.21, # Federal + state varies
pers_tax=0.37, # Federal + state varies significantly
living_cost=12000, business_cost=3200, setup_cost=85000,
currency="USD",
market_growth=6.8, ease_score=8.6, banking_score=9.4, partnership_score=88,
visa_options=["EB-5 Investor", "L-1 Intracompany", "E-2 Treaty Investor", "O-1 Extraordinary"],
market_insights={},
risk_factors={"political": 0.18, "economic": 0.14, "regulatory": 0.16},
seasonality=[1.0, 0.95, 1.05, 1.15, 1.1, 1.05, 0.95, 0.9, 1.1, 1.2, 1.25, 1.4],
special_programs=["EB-5 Regional Centers", "SBIR Grants", "State Startup Incentives"],
recent_changes="EB-5 minimum increased to $800K, enhanced startup visa discussions",
ai_sentiment=0.82
),
"UK": CountryData(
name="United Kingdom",
corp_tax=0.25, # Increased from 19% in 2023
pers_tax=0.45, # Progressive rates + additional rate
living_cost=7200, business_cost=1800, setup_cost=28000,
currency="GBP",
market_growth=3.8, ease_score=8.4, banking_score=9.1, partnership_score=81,
visa_options=["Innovator Founder", "Scale-up Visa", "Global Talent", "High Potential Individual"],
market_insights={},
risk_factors={"political": 0.15, "economic": 0.19, "regulatory": 0.11},
seasonality=[0.9, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.25, 1.1, 1.05, 1.0, 1.2],
special_programs=["R&D Tax Credits", "SEIS/EIS Schemes", "Innovate UK Grants"],
recent_changes="Innovator visa replaced 2023, HPI visa introduced for top graduates",
ai_sentiment=0.74
),
"Ireland": CountryData(
name="Ireland",
corp_tax=0.125, # Famous 12.5% rate for trading income
pers_tax=0.52, # Including USC and PRSI
living_cost=4800, business_cost=1200, setup_cost=22000,
currency="EUR",
market_growth=6.2, ease_score=8.8, banking_score=8.7, partnership_score=87,
visa_options=["Startup Entrepreneur Programme", "Investment Programme", "Critical Skills"],
market_insights={},
risk_factors={"political": 0.04, "economic": 0.16, "regulatory": 0.08},
seasonality=[0.8, 0.8, 0.9, 1.0, 1.2, 1.4, 1.5, 1.4, 1.2, 1.1, 0.9, 0.9],
special_programs=["R&D Tax Credit 25%", "Knowledge Development Box", "Employment Incentive"],
recent_changes="Enhanced startup supports 2024, housing challenges persist",
ai_sentiment=0.81
),
"Malta": CountryData(
name="Malta",
corp_tax=0.35, # But with refunds, effective rate much lower
pers_tax=0.35, # Progressive with various exemptions
living_cost=3500, business_cost=900, setup_cost=25000,
currency="EUR",
market_growth=5.8, ease_score=8.1, banking_score=7.9, partnership_score=84,
visa_options=["Nomad Residence Permit", "Global Residence Programme", "Investment Programme"],
market_insights={},
risk_factors={"political": 0.07, "economic": 0.15, "regulatory": 0.10},
seasonality=[0.7, 0.7, 0.8, 0.9, 1.2, 1.5, 1.8, 1.7, 1.4, 1.1, 0.9, 0.8],
special_programs=["Malta Individual Investor Programme", "Highly Qualified Persons Rules"],
recent_changes="Digital nomad permit enhanced 2024, gaming license updates",
ai_sentiment=0.79
),
"Greece": CountryData(
name="Greece",
corp_tax=0.22, # Reduced from higher rates
pers_tax=0.44, # Progressive system
living_cost=2200, business_cost=550, setup_cost=12000,
currency="EUR",
market_growth=4.2, ease_score=7.6, banking_score=7.4, partnership_score=78,
visa_options=["Golden Visa", "Digital Nomad Visa", "Investment Activity Permit"],
market_insights={},
risk_factors={"political": 0.12, "economic": 0.25, "regulatory": 0.14},
seasonality=[0.6, 0.6, 0.8, 1.0, 1.3, 1.6, 1.9, 1.8, 1.5, 1.2, 0.9, 0.7],
special_programs=["Non-Dom Regime", "Startup Greece", "Development Law Incentives"],
recent_changes="Golden Visa minimum increased 2023, digital nomad visa launched",
ai_sentiment=0.72
),
"Cyprus": CountryData(
name="Cyprus",
corp_tax=0.125, # EU's lowest corporate tax rate
pers_tax=0.35, # Progressive with non-dom benefits
living_cost=3800, business_cost=1100, setup_cost=20000,
currency="EUR",
market_growth=5.6, ease_score=8.0, banking_score=7.8, partnership_score=83,
visa_options=["Category F (Investment)", "Digital Nomad Visa", "Pink Slip"],
market_insights={},
risk_factors={"political": 0.09, "economic": 0.18, "regulatory": 0.11},
seasonality=[0.8, 0.8, 0.9, 1.0, 1.3, 1.6, 1.7, 1.6, 1.4, 1.2, 1.0, 0.9],
special_programs=["IP Box Regime", "Notional Interest Deduction", "Non-Dom Programme"],
recent_changes="Enhanced digital nomad provisions 2024, banking sector recovery",
ai_sentiment=0.77
)
}
# =========================
# AI-POWERED INSIGHTS ENGINE
# =========================
class AIInsightEngine:
def __init__(self):
self.insight_templates = {
"analytical_optimist": {
"high_roi": "Outstanding potential detected! Your tech profile + {country} = perfect storm for growth. The {special_metric} factor could amplify returns by {multiplier}x.",
"medium_roi": "Solid opportunity with room for optimization. Consider {suggestion} to unlock additional {percentage}% returns.",
"low_roi": "Challenging numbers, but not impossible. Focus on {focus_area} - early movers often capture disproportionate value.",
"risk_warning": "Risk assessment shows {risk_factor}. Mitigation strategy: {mitigation}."
},
"risk_aware_pioneer": {
"high_roi": "Exceptional asymmetric upside detected. {country}'s regulatory clarity + your crypto expertise = ideal positioning for the next bull cycle.",
"medium_roi": "Decent alpha opportunity. The {regulatory_advantage} gives you edge over competitors stuck in restrictive jurisdictions.",
"low_roi": "Suboptimal risk-adjusted returns. Consider {alternative} or wait for {catalyst} to improve the setup.",
"risk_warning": "Regulatory headwinds: {regulation_risk}. Diversification strategy recommended."
},
"relationship_focused": {
"high_roi": "Your network effect multiplier in {country} is exceptional. The {business_culture} aligns perfectly with your consulting methodology.",
"medium_roi": "Strong foundation for relationship-driven growth. Focus on {networking_opportunity} to accelerate client acquisition.",
"low_roi": "Relationship building will be challenging initially. Invest heavily in {relationship_strategy} for long-term success.",
"risk_warning": "Cultural adaptation period: {adaptation_time}. Client trust building critical."
},
"growth_focused": {
"high_roi": "Scalability paradise! {country}'s {infrastructure_advantage} + your e-commerce expertise = exponential growth potential.",
"medium_roi": "Solid growth trajectory possible. Optimize {conversion_factor} to achieve top-tier performance.",
"low_roi": "Growth constraints identified: {constraint}. Pivot strategy: {pivot_suggestion}.",
"risk_warning": "Market saturation risk in {timeframe}. First-mover advantage critical."
},
"conservative_builder": {
"high_roi": "Exceptional wealth preservation opportunity. {country}'s {stability_factor} offers both growth and capital protection.",
"medium_roi": "Steady wealth building trajectory. The {compound_advantage} effect strengthens over time.",
"low_roi": "Conservative approach recommended. Focus on {safe_strategy} until market conditions improve.",
"risk_warning": "Volatility in {risk_area}. Diversification across {alternatives} advised."
},
"lifestyle_optimizer": {
"high_roi": "Lifestyle + profit optimization achieved! {country} offers the perfect blend of {lifestyle_benefits} and tax efficiency.",
"medium_roi": "Quality of life upgrade with decent returns. The {happiness_factor} makes this worthwhile beyond just numbers.",
"low_roi": "Lifestyle benefits outweigh financial returns. If {lifestyle_priority} is your focus, proceed despite lower ROI.",
"risk_warning": "Lifestyle inflation risk: {inflation_factor}. Budget discipline essential."
}
}
self.risk_mitigation_strategies = {
"political": ["Diversify across jurisdictions", "Monitor policy changes", "Maintain dual residencies"],
"economic": ["Currency hedging", "Multiple revenue streams", "Economic indicator tracking"],
"regulatory": ["Legal compliance monitoring", "Regulatory change alerts", "Professional advisory team"]
}
self.success_catalysts = {
"tech_startup": ["Product-market fit", "Series A funding", "Key hire acquisition"],
"crypto_trader": ["Institutional adoption", "Regulatory clarity", "Market cycle timing"],
"consulting": ["Thought leadership", "Strategic partnerships", "Client case studies"],
"ecommerce": ["Supply chain optimization", "Marketing automation", "International expansion"],
"real_estate": ["Market timing", "Leverage optimization", "Portfolio diversification"],
"content_creator": ["Viral content", "Brand partnerships", "Platform diversification"]
}
def generate_personalized_insight(self, profile: UserProfile, country: CountryData, result: Dict) -> Dict:
"""Generate AI-powered personalized insights based on calculation results"""
try:
roi = result.get('roi', 0)
risk_score = result.get('risk_score', 50)
confidence = result.get('monte_carlo', {}).get('probability_positive_roi', 0.5)
# Determine insight tier
if roi >= 200 and confidence >= 0.8:
tier = "high_roi"
elif roi >= 100 and confidence >= 0.6:
tier = "medium_roi"
else:
tier = "low_roi"
# Get persona-specific template
persona = profile.ai_persona
template = self.insight_templates.get(persona, self.insight_templates["analytical_optimist"])[tier]
# Generate dynamic variables
variables = self._generate_insight_variables(profile, country, result, tier)
# Format the insight
insight_text = template.format(**variables)
# Add risk warning if needed
if risk_score > 70:
risk_template = self.insight_templates[persona]["risk_warning"]
risk_variables = self._generate_risk_variables(country, risk_score)
risk_text = risk_template.format(**risk_variables)
insight_text += f"\n\n{risk_text}"
# Calculate confidence score
confidence_score = min(95, confidence * 100 + random.uniform(-5, 5))
return {
"text": insight_text,
"confidence": confidence_score,
"tier": tier,
"key_factors": variables.get("key_factors", []),
"action_items": self._generate_action_items(profile, country, tier),
"timeline": self._estimate_timeline(tier, profile),
"success_probability": confidence * 100
}
except Exception as e:
print(f"AI Insight generation error: {e}")
return {
"text": f"Analysis complete for {profile.name} relocating to {country.name}. Custom insights are being generated based on your unique profile.",
"confidence": 75,
"tier": "medium_roi",
"key_factors": ["Market opportunity", "Tax optimization", "Risk factors"],
"action_items": ["Research visa requirements", "Consult tax advisor", "Validate market assumptions"],
"timeline": "12-18 months for full transition",
"success_probability": 70
}
def _generate_insight_variables(self, profile: UserProfile, country: CountryData, result: Dict, tier: str) -> Dict:
"""Generate dynamic variables for insight templates"""
variables = {
"country": country.name,
"profile": profile.name
}
# Country-specific advantages
if country.corp_tax < 0.15:
variables["special_metric"] = "ultra-low corporate tax"
variables["tax_advantage"] = f"{country.corp_tax*100:.1f}% corporate rate"
elif country.ease_score > 9.0:
variables["special_metric"] = "business-friendly environment"
variables["infrastructure_advantage"] = "world-class business infrastructure"
else:
variables["special_metric"] = "market growth potential"
variables["growth_advantage"] = f"{country.market_growth:.1f}% annual growth"
# Profile-specific factors
if profile.id == "tech_startup":
variables["multiplier"] = "2.5"
variables["suggestion"] = "accelerated talent acquisition"
variables["focus_area"] = "product-market fit validation"
elif profile.id == "crypto_trader":
variables["regulatory_advantage"] = f"{country.name}'s progressive crypto framework"
variables["alternative"] = "jurisdictional arbitrage strategy"
variables["catalyst"] = "next regulatory clarity milestone"
elif profile.id == "consulting":
variables["business_culture"] = f"{country.name}'s professional service market"
variables["networking_opportunity"] = "local business associations"
variables["relationship_strategy"] = "cultural immersion program"
elif profile.id == "ecommerce":
variables["conversion_factor"] = "logistics optimization"
variables["constraint"] = "market access barriers"
variables["pivot_suggestion"] = "B2B pivot strategy"
elif profile.id == "real_estate":
variables["stability_factor"] = "property market fundamentals"
variables["compound_advantage"] = "rental yield + appreciation"
variables["safe_strategy"] = "diversified property portfolio"
elif profile.id == "content_creator":
variables["lifestyle_benefits"] = "creator-friendly tax structure + quality of life"
variables["happiness_factor"] = "work-life balance optimization"
variables["lifestyle_priority"] = "creative freedom and inspiration"
# ROI-specific variables
if tier == "high_roi":
variables["percentage"] = str(random.randint(15, 25))
elif tier == "medium_roi":
variables["percentage"] = str(random.randint(8, 15))
else:
variables["percentage"] = str(random.randint(3, 8))
# Risk-specific variables
top_risk = max(country.risk_factors.items(), key=lambda x: x[1])
variables["risk_factor"] = f"{top_risk[0]} risk at {top_risk[1]*100:.1f}%"
return variables
def _generate_risk_variables(self, country: CountryData, risk_score: float) -> Dict:
"""Generate risk-specific variables"""
top_risk = max(country.risk_factors.items(), key=lambda x: x[1])
risk_type = top_risk[0]
return {
"risk_factor": f"{risk_type} instability ({risk_score:.0f}% risk score)",
"regulation_risk": f"{country.name}'s evolving regulatory landscape",
"mitigation": ", ".join(self.risk_mitigation_strategies.get(risk_type, ["Professional consultation"])),
"adaptation_time": "6-12 months",
"timeframe": f"{random.randint(18, 36)} months",
"risk_area": risk_type,
"alternatives": "Portugal, Ireland" if country.name != "Portugal" else "Malta, Cyprus",
"inflation_factor": f"{country.living_cost/1000:.1f}x cost increase"
}
def _generate_action_items(self, profile: UserProfile, country: CountryData, tier: str) -> List[str]:
"""Generate specific action items based on profile and tier"""
base_actions = [
f"Research {country.visa_options[0]} requirements",
f"Consult with {country.name} tax advisor",
"Prepare financial documentation"
]
if tier == "high_roi":
base_actions.extend([
"Fast-track visa application",
"Secure local banking relationships",
"Identify strategic partnerships"
])
elif tier == "medium_roi":
base_actions.extend([
"Validate market assumptions",
"Develop local network",
"Plan phased transition"
])
else:
base_actions.extend([
"Reassess timing and strategy",
"Consider alternative jurisdictions",
"Focus on risk mitigation"
])
# Profile-specific actions
profile_actions = {
"tech_startup": ["Connect with local accelerators", "Research IP protection laws"],
"crypto_trader": ["Verify crypto regulations", "Establish compliant trading setup"],
"consulting": ["Join professional associations", "Study local business culture"],
"ecommerce": ["Analyze logistics infrastructure", "Research VAT implications"],
"real_estate": ["Study property market cycles", "Verify foreign ownership rules"],
"content_creator": ["Test internet connectivity", "Research content monetization rules"]
}
base_actions.extend(profile_actions.get(profile.id, []))
return base_actions[:6] # Limit to 6 action items
def _estimate_timeline(self, tier: str, profile: UserProfile) -> str:
"""Estimate realistic timeline based on tier and profile"""
base_timelines = {
"high_roi": "6-12 months for optimal positioning",
"medium_roi": "12-18 months for full transition",
"low_roi": "18-24 months with careful planning"
}
# Adjust for profile complexity
if profile.id in ["crypto_trader", "tech_startup"]:
return base_timelines[tier].replace("6-12", "9-15").replace("12-18", "15-24")
return base_timelines[tier]
# =========================
# ENHANCED CALCULATION ENGINE
# =========================
class AdvancedROICalculator:
def __init__(self):
self.monte_carlo_iterations = 2000 # Increased for better accuracy
self.confidence_intervals = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]
def calculate_comprehensive_roi(
self,
profile: UserProfile,
country: CountryData,
current_revenue: float,
current_margin: float,
current_corp_tax: float,
current_pers_tax: float,
current_living: float,
current_business: float,
revenue_multiplier: float,
margin_improvement: float,
success_probability: float,
time_horizon: int,
discount_rate: float
) -> Dict:
"""Enhanced ROI calculation with advanced analytics"""
try:
# Input validation and normalization
current_revenue = max(1000, float(current_revenue or 45000))
current_margin = max(1, min(95, float(current_margin or 25)))
# Base calculation
base_result = self._calculate_base_metrics(
profile, country, current_revenue, current_margin,
current_corp_tax, current_pers_tax, current_living, current_business,
revenue_multiplier, margin_improvement, success_probability,
time_horizon, discount_rate
)
# Advanced analytics
monte_carlo_result = self._advanced_monte_carlo(
profile, country, current_revenue, current_margin,
revenue_multiplier, margin_improvement, success_probability,
time_horizon, discount_rate
)
sensitivity_result = self._comprehensive_sensitivity_analysis(
profile, country, current_revenue, current_margin,
revenue_multiplier, margin_improvement, time_horizon, discount_rate
)
scenario_analysis = self._scenario_analysis(
profile, country, current_revenue, current_margin,
revenue_multiplier, margin_improvement, time_horizon, discount_rate
)
# Risk scoring
risk_score = self._calculate_comprehensive_risk(country, profile, base_result)
opportunity_score = self._calculate_opportunity_score(base_result, country, profile)
return {
**base_result,
"monte_carlo": monte_carlo_result,
"sensitivity": sensitivity_result,
"scenarios": scenario_analysis,
"risk_score": risk_score,
"opportunity_score": opportunity_score,
"recommendation": self._generate_recommendation(base_result, risk_score, opportunity_score)
}
except Exception as e:
print(f"ROI Calculation Error: {e}")
return self._get_fallback_result(country, time_horizon)
def _calculate_base_metrics(self, profile, country, *args) -> Dict:
"""Enhanced base metrics calculation"""
try:
(current_revenue, current_margin, current_corp_tax, current_pers_tax,
current_living, current_business, revenue_multiplier, margin_improvement,
success_probability, time_horizon, discount_rate) = args
# Current situation analysis
current_profit = current_revenue * (current_margin / 100)
current_corp_after_tax = current_profit * (1 - current_corp_tax/100)
current_pers_after_tax = current_corp_after_tax * (1 - current_pers_tax/100)
current_net_income = current_pers_after_tax - current_living - current_business
# Projected situation
success_factor = success_probability / 100
profile_multiplier = profile.success_multiplier
new_revenue = current_revenue * revenue_multiplier * profile_multiplier
new_margin = min(95, current_margin + margin_improvement)
new_profit = new_revenue * (new_margin / 100)
# Apply country tax rates
new_corp_after_tax = new_profit * (1 - country.corp_tax)
new_pers_after_tax = new_corp_after_tax * (1 - country.pers_tax)
new_net_income = new_pers_after_tax - country.living_cost - country.business_cost
# Monthly cash flow delta
monthly_delta = (new_net_income - current_net_income) * success_factor
setup_cost = country.setup_cost
# Enhanced cash flow projection with seasonality and growth
monthly_flows = []
cumulative_flow = -setup_cost
payback_month = None
growth_rate = 0.02 # 2% monthly growth assumption
for month in range(1, time_horizon + 1):
# Apply seasonality
seasonal_factor = country.seasonality[(month - 1) % 12]
# Apply growth over time
growth_factor = (1 + growth_rate) ** (month - 1)
# Calculate monthly cash flow
monthly_cf = monthly_delta * seasonal_factor * growth_factor
monthly_flows.append(monthly_cf)
cumulative_flow += monthly_cf
if payback_month is None and cumulative_flow >= 0:
payback_month = month
# Advanced financial metrics
discount_monthly = (1 + discount_rate/100) ** (1/12) - 1
# NPV calculation
npv = -setup_cost + sum(cf / (1 + discount_monthly) ** month
for month, cf in enumerate(monthly_flows, 1))
# IRR calculation
irr_annual = self._calculate_irr(setup_cost, monthly_flows) * 100
# ROI and other metrics
total_return = sum(monthly_flows)
roi_percentage = (total_return / setup_cost) * 100 if setup_cost > 0 else 0
# Additional metrics
profitability_index = (npv + setup_cost) / setup_cost if setup_cost > 0 else 1
mirr = self._calculate_mirr(setup_cost, monthly_flows, discount_rate/100) * 100
return {
"npv": npv,
"roi": roi_percentage,
"irr_annual": irr_annual,
"mirr_annual": mirr,
"payback_months": payback_month or float('inf'),
"payback_years": (payback_month / 12) if payback_month else float('inf'),
"monthly_delta": monthly_delta,
"total_return": total_return,
"monthly_flows": monthly_flows,
"setup_cost": setup_cost,
"profitability_index": profitability_index,
"current_net_income": current_net_income,
"projected_net_income": new_net_income
}
except Exception as e:
print(f"Base metrics calculation error: {e}")
return self._get_fallback_result(country, time_horizon)
def _advanced_monte_carlo(self, profile, country, *args) -> Dict:
"""Advanced Monte Carlo simulation with correlated variables"""
try:
results = []
for _ in range(self.monte_carlo_iterations):
# Generate correlated random variables
market_shock = np.random.normal(0, 0.2) # Market-wide shock
# Revenue variance (correlated with market)
revenue_variance = np.random.normal(1.0, 0.18) + market_shock * 0.3
# Margin variance (anti-correlated with revenue for realism)
margin_variance = np.random.normal(1.0, 0.12) - revenue_variance * 0.1
# Success probability variance
success_variance = np.random.beta(8, 2) * 1.2 # Skewed distribution
# Cost inflation
cost_inflation = max(0.8, np.random.normal(1.0, 0.15))
# Modify inputs
modified_args = list(args)
modified_args[0] *= max(0.3, revenue_variance) # revenue
modified_args[1] *= max(0.5, margin_variance) # margin
modified_args[7] *= max(0.1, success_variance) # success probability
# Adjust costs for inflation
modified_country = CountryData(
**{k: v for k, v in country.__dict__.items() if k != 'living_cost'},
living_cost=country.living_cost * cost_inflation
)
result = self._calculate_base_metrics(profile, modified_country, *modified_args)
results.append(result)
# Extract key metrics
rois = [r['roi'] for r in results]
npvs = [r['npv'] for r in results]
paybacks = [r['payback_years'] for r in results if r['payback_years'] != float('inf')]
# Calculate comprehensive statistics
confidence_intervals = {}
for ci in self.confidence_intervals:
confidence_intervals[f'roi_{int(ci*100)}'] = np.percentile(rois, ci * 100)
confidence_intervals[f'npv_{int(ci*100)}'] = np.percentile(npvs, ci * 100)
return {
"mean_roi": np.mean(rois),
"median_roi": np.median(rois),
"std_roi": np.std(rois),
"skew_roi": float(np.mean(((np.array(rois) - np.mean(rois)) / np.std(rois)) ** 3)),
"mean_npv": np.mean(npvs),
"std_npv": np.std(npvs),
"confidence_intervals": confidence_intervals,
"probability_positive_roi": sum(1 for roi in rois if roi > 0) / len(rois),
"probability_100_roi": sum(1 for roi in rois if roi > 100) / len(rois),
"var_95": np.percentile(rois, 5), # Value at Risk
"expected_shortfall": np.mean([roi for roi in rois if roi <= np.percentile(rois, 5)]),
"mean_payback": np.mean(paybacks) if paybacks else float('inf')
}
except Exception as e:
print(f"Monte Carlo simulation error: {e}")
return {"mean_roi": 0, "std_roi": 0, "probability_positive_roi": 0}
def _comprehensive_sensitivity_analysis(self, profile, country, *args) -> Dict:
"""Comprehensive sensitivity analysis"""
try:
base_result = self._calculate_base_metrics(profile, country, *args)
base_roi = base_result['roi']
sensitivities = {}
# Define variables to test
variables = [
('revenue', 0, [0.8, 0.9, 1.1, 1.2, 1.3]),
('margin', 1, [-5, -2, 2, 5, 8]),
('revenue_multiplier', 6, [0.8, 1.0, 1.5, 2.0, 2.5]),
('margin_improvement', 7, [-5, 0, 5, 10, 15]),
('success_probability', 8, [50, 65, 80, 90, 95])
]
for var_name, var_index, test_values in variables:
sensitivities[var_name] = {}
for test_value in test_values:
try:
modified_args = list(args)
if var_name in ['revenue', 'revenue_multiplier']:
modified_args[var_index] = args[var_index] * test_value
else:
modified_args[var_index] = test_value
result = self._calculate_base_metrics(profile, country, *modified_args)
sensitivities[var_name][str(test_value)] = result['roi']
except:
sensitivities[var_name][str(test_value)] = base_roi
return sensitivities
except Exception as e:
print(f"Sensitivity analysis error: {e}")
return {}
def _scenario_analysis(self, profile, country, *args) -> Dict:
"""Three scenario analysis: pessimistic, realistic, optimistic"""
try:
scenarios = {}
# Pessimistic scenario
pessimistic_args = list(args)
pessimistic_args[6] *= 0.7 # Lower revenue multiplier
pessimistic_args[7] *= 0.8 # Lower margin improvement
pessimistic_args[8] *= 0.6 # Lower success probability
scenarios['pessimistic'] = self._calculate_base_metrics(profile, country, *pessimistic_args)
# Realistic scenario (base case)
scenarios['realistic'] = self._calculate_base_metrics(profile, country, *args)
# Optimistic scenario
optimistic_args = list(args)
optimistic_args[6] *= 1.3 # Higher revenue multiplier
optimistic_args[7] *= 1.2 # Higher margin improvement
optimistic_args[8] = min(95, optimistic_args[8] * 1.1) # Higher success probability
scenarios['optimistic'] = self._calculate_base_metrics(profile, country, *optimistic_args)
return scenarios
except Exception as e:
print(f"Scenario analysis error: {e}")
return {}
def _calculate_irr(self, initial_investment: float, cash_flows: List[float]) -> float:
"""Calculate Internal Rate of Return using Newton-Raphson method"""
try:
def npv_function(rate):
return -initial_investment + sum(cf / (1 + rate) ** (month/12)
for month, cf in enumerate(cash_flows, 1))
def npv_derivative(rate):
return sum(-cf * (month/12) / (1 + rate) ** (month/12 + 1)
for month, cf in enumerate(cash_flows, 1))
rate = 0.1 # Initial guess
for _ in range(50): # Maximum iterations
npv = npv_function(rate)
if abs(npv) < 1e-6:
return rate
derivative = npv_derivative(rate)
if abs(derivative) < 1e-10:
break
rate = rate - npv / derivative
# Keep rate reasonable
if rate < -0.99 or rate > 10:
return 0
return rate if abs(npv_function(rate)) < 1000 else 0
except:
return 0
def _calculate_mirr(self, initial_investment: float, cash_flows: List[float],
discount_rate: float) -> float:
"""Calculate Modified Internal Rate of Return"""
try:
positive_flows = [max(0, cf) for cf in cash_flows]
negative_flows = [min(0, cf) for cf in cash_flows]
# Future value of positive flows
fv_positive = sum(cf * (1 + discount_rate) ** ((len(cash_flows) - month) / 12)
for month, cf in enumerate(positive_flows, 1))
# Present value of negative flows
pv_negative = initial_investment + sum(abs(cf) / (1 + discount_rate) ** (month / 12)
for month, cf in enumerate(negative_flows, 1))
if pv_negative == 0 or fv_positive <= 0:
return 0
n_years = len(cash_flows) / 12
mirr = (fv_positive / pv_negative) ** (1 / n_years) - 1
return mirr if -0.99 <= mirr <= 10 else 0
except:
return 0
def _calculate_comprehensive_risk(self, country: CountryData, profile: UserProfile,
result: Dict) -> float:
"""Enhanced risk scoring with multiple factors"""
try:
# Base country risks
political_risk = country.risk_factors.get('political', 0.1) * 25
economic_risk = country.risk_factors.get('economic', 0.1) * 35
regulatory_risk = country.risk_factors.get('regulatory', 0.1) * 25
# Market sentiment risk
sentiment_risk = (1 - country.ai_sentiment) * 15
# ROI volatility risk (from Monte Carlo if available)
volatility_risk = 0
if 'monte_carlo' in result:
std_roi = result['monte_carlo'].get('std_roi', 0)
volatility_risk = min(20, std_roi / 5) # Cap at 20 points
# Profile risk adjustment
risk_tolerance_adjustment = (100 - profile.risk_tolerance) / 100 * 20
# Payback period risk
payback_risk = 0
if result['payback_years'] != float('inf'):
if result['payback_years'] > 5:
payback_risk = 15
elif result['payback_years'] > 3:
payback_risk = 10
elif result['payback_years'] > 2:
payback_risk = 5
else:
payback_risk = 25
total_risk = (political_risk + economic_risk + regulatory_risk +
sentiment_risk + volatility_risk + risk_tolerance_adjustment +
payback_risk)
return min(100, max(0, total_risk))
except:
return 50
def _calculate_opportunity_score(self, result: Dict, country: CountryData, profile: UserProfile) -> float:
"""Enhanced opportunity scoring with multiple factors"""
try:
# ROI contribution (40% weight)
roi = result.get('roi', 0)
roi_score = min(40, roi / 5) # Cap at 200% ROI = 40 points
# Market growth potential (20% weight)
growth_score = country.market_growth * 2
# Business environment (20% weight)
ease_score = country.ease_score * 2
banking_score = country.banking_score * 2
environment_score = (ease_score + banking_score) / 2
# AI sentiment and market timing (10% weight)
sentiment_score = country.ai_sentiment * 10
# Profile alignment (10% weight)
profile_fit = profile.success_multiplier * 10
total_score = roi_score + growth_score + environment_score + sentiment_score + profile_fit
return min(100, max(0, total_score))
except:
return 50
def _generate_recommendation(self, result: Dict, risk_score: float, opportunity_score: float) -> str:
"""Generate investment recommendation based on scores"""
roi = result.get('roi', 0)
if roi >= 200 and risk_score < 30:
return "STRONG BUY - Exceptional opportunity with manageable risk"
elif roi >= 150 and risk_score < 40:
return "BUY - Strong opportunity with acceptable risk profile"
elif roi >= 100 and risk_score < 60:
return "HOLD/CONSIDER - Decent opportunity, monitor risk factors"
elif roi >= 50 and risk_score < 70:
return "WEAK HOLD - Marginal opportunity, consider alternatives"
else:
return "AVOID - Poor risk-adjusted returns, seek better opportunities"
def _get_fallback_result(self, country: CountryData, time_horizon: int) -> Dict:
"""Fallback result for error cases"""
return {
"npv": 0, "roi": 0, "irr_annual": 0, "mirr_annual": 0,
"payback_months": float('inf'), "payback_years": float('inf'),
"monthly_delta": 0, "total_return": 0,
"monthly_flows": [0] * time_horizon, "setup_cost": country.setup_cost,
"profitability_index": 1, "current_net_income": 0, "projected_net_income": 0
}
# =========================
# ENHANCED VISUALIZATION ENGINE
# =========================
class AdvancedChartGenerator:
@staticmethod
def create_comprehensive_dashboard(result: Dict, country_name: str, profile_name: str) -> go.Figure:
"""Create advanced ROI dashboard with multiple insights"""
try:
fig = make_subplots(
rows=3, cols=2,
subplot_titles=(
"Cash Flow Projection", "Monte Carlo ROI Distribution",
"Risk-Return Analysis", "Sensitivity Tornado",
"Scenario Comparison", "Confidence Intervals"
),
specs=[
[{"type": "scatter"}, {"type": "histogram"}],
[{"type": "scatter"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "scatter"}]
],
vertical_spacing=0.08,
horizontal_spacing=0.1
)
# 1. Enhanced Cash Flow Projection
monthly_flows = result.get('monthly_flows', [0] * 60)
months = list(range(1, len(monthly_flows) + 1))
cumulative = np.cumsum([-result.get('setup_cost', 50000)] + monthly_flows)
fig.add_trace(
go.Scatter(
x=months, y=cumulative, mode='lines+markers',
name='Cumulative Cash Flow',
line=dict(color='#2563eb', width=3),
fill='tonexty' if any(c >= 0 for c in cumulative) else None
), row=1, col=1
)
# Add breakeven line
fig.add_hline(y=0, line_dash="dash", line_color="red", row=1, col=1)
# 2. Monte Carlo Distribution
if 'monte_carlo' in result:
mc_data = result['monte_carlo']
# Generate sample data based on MC statistics
roi_samples = np.random.normal(
mc_data.get('mean_roi', 0),
max(1, mc_data.get('std_roi', 10)),
1000
)
fig.add_trace(
go.Histogram(
x=roi_samples, name='ROI Distribution',
marker_color='#10b981', opacity=0.7,
nbinsx=30
), row=1, col=2
)
# 3. Risk-Return Scatter for multiple countries
countries = list(ENHANCED_COUNTRIES.keys())
calculator = AdvancedROICalculator()
risk_scores = []
return_scores = []
for c in countries:
country_data = ENHANCED_COUNTRIES[c]
risk = calculator._calculate_comprehensive_risk(
country_data,
ENHANCED_PROFILES.get('tech_startup', list(ENHANCED_PROFILES.values())[0]),
{'roi': country_data.market_growth * 20, 'payback_years': 2}
)
risk_scores.append(risk)
return_scores.append(country_data.market_growth * 20)
fig.add_trace(
go.Scatter(
x=return_scores, y=risk_scores,
mode='markers+text', text=countries,
textposition="top center",
name='Countries Risk-Return',
marker=dict(size=12, color='#f59e0b', opacity=0.8)
), row=2, col=1
)
# 4. Sensitivity Tornado Chart
if 'sensitivity' in result:
sens_data = result['sensitivity']
if sens_data:
variables = []
impacts = []
for var, values in sens_data.items():
if isinstance(values, dict) and values:
val_list = list(values.values())
if len(val_list) >= 2:
impact = max(val_list) - min(val_list)
variables.append(var.replace('_', ' ').title())
impacts.append(impact)
if variables:
fig.add_trace(
go.Bar(
y=variables, x=impacts, orientation='h',
name='Sensitivity Impact',
marker_color='#8b5cf6'
), row=2, col=2
)
# 5. Scenario Comparison
if 'scenarios' in result:
scenarios = result['scenarios']
scenario_names = list(scenarios.keys())
scenario_rois = [scenarios[s].get('roi', 0) for s in scenario_names]
colors = ['#ef4444', '#f59e0b', '#10b981'] # Red, Yellow, Green
fig.add_trace(
go.Bar(
x=scenario_names, y=scenario_rois,
name='Scenario ROI',
marker_color=colors[:len(scenario_names)]
), row=3, col=1
)
# 6. Confidence Intervals
if 'monte_carlo' in result and 'confidence_intervals' in result['monte_carlo']:
ci_data = result['monte_carlo']['confidence_intervals']
ci_levels = [int(k.split('_')[1]) for k in ci_data.keys() if 'roi_' in k]
ci_values = [ci_data[f'roi_{level}'] for level in ci_levels]
if ci_levels and ci_values:
fig.add_trace(
go.Scatter(
x=ci_levels, y=ci_values,
mode='lines+markers',
name='ROI Confidence Intervals',
line=dict(color='#06b6d4', width=3)
), row=3, col=2
)
# Update layout
fig.update_layout(
height=1000,
title_text=f"Comprehensive Analysis: {profile_name} → {country_name}",
showlegend=False,
template="plotly_white",
title_x=0.5,
title_font_size=20
)
return fig
except Exception as e:
print(f"Advanced chart generation error: {e}")
# Return simple fallback chart
fig = go.Figure()
fig.add_annotation(
text=f"Advanced analytics loading...<br>Error: {str(e)[:100]}...",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16)
)
fig.update_layout(height=400, template="plotly_white")
return fig
@staticmethod
def create_country_heatmap(selected_countries: List[str], profile_id: str) -> go.Figure:
"""Create heatmap comparing countries across multiple dimensions"""
try:
if not selected_countries or profile_id not in ENHANCED_PROFILES:
return go.Figure()
profile = ENHANCED_PROFILES[profile_id]
# Metrics to compare
metrics = [
'Tax Efficiency', 'Living Cost', 'Business Environment',
'Market Growth', 'Banking Quality', 'Risk Score'
]
heatmap_data = []
countries_data = []
for country_key in selected_countries[:8]: # Limit to 8 countries
if country_key in ENHANCED_COUNTRIES:
country = ENHANCED_COUNTRIES[country_key]
# Calculate normalized scores (0-100)
tax_eff = (1 - (country.corp_tax + country.pers_tax)) * 100
cost_eff = max(0, 100 - (country.living_cost / 150)) # Normalized
business_env = (country.ease_score + country.banking_score) * 5
market_growth = country.market_growth * 10
banking = country.banking_score * 10
# Risk score (inverted so higher is better)
calculator = AdvancedROICalculator()
risk_raw = calculator._calculate_comprehensive_risk(country, profile, {'roi': 100, 'payback_years': 2})
risk_score = 100 - risk_raw
country_scores = [tax_eff, cost_eff, business_env, market_growth, banking, risk_score]
heatmap_data.append(country_scores)
countries_data.append(country.name)
if not heatmap_data:
return go.Figure()
fig = go.Figure(data=go.Heatmap(
z=heatmap_data,
x=metrics,
y=countries_data,
colorscale='RdYlGn',
text=[[f'{val:.1f}' for val in row] for row in heatmap_data],
texttemplate="%{text}",
textfont={"size": 12},
colorbar=dict(title="Score (0-100)")
))
fig.update_layout(
title=f"Country Comparison Heatmap - {profile.name}",
xaxis_title="Evaluation Criteria",
yaxis_title="Countries",
height=400 + len(countries_data) * 30,
template="plotly_white"
)
return fig
except Exception as e:
print(f"Heatmap generation error: {e}")
fig = go.Figure()
fig.add_annotation(text=f"Heatmap error: {str(e)}", x=0.5, y=0.5)
return fig
# =========================
# LEAD GENERATION & CRM SYSTEM
# =========================
class EnhancedLeadEngine:
def __init__(self):
self.conversion_funnel = {
'email_capture': {'roi_min': 30, 'confidence': 0.2},
'consultation_booking': {'roi_min': 100, 'confidence': 0.5},
'premium_service': {'roi_min': 200, 'confidence': 0.7},
'vip_concierge': {'roi_min': 300, 'confidence': 0.8}
}
self.pricing_tiers = {
'starter': {'base_price': 497, 'max_discount': 0.8},
'standard': {'base_price': 1997, 'max_discount': 0.6},
'premium': {'base_price': 4997, 'max_discount': 0.5},
'vip': {'base_price': 9997, 'max_discount': 0.3}
}
def generate_dynamic_offer(self, result: Dict, profile: UserProfile, country: CountryData) -> Dict:
"""Generate dynamic, personalized offers based on AI analysis"""
try:
roi = result.get('roi', 0)
confidence = result.get('monte_carlo', {}).get('probability_positive_roi', 0)
risk_score = result.get('risk_score', 50)
opportunity_score = result.get('opportunity_score', 50)
# Determine offer tier based on multiple factors
offer_tier = self._calculate_offer_tier(roi, confidence, risk_score, opportunity_score)
# Generate personalized pricing
base_pricing = self.pricing_tiers[offer_tier]
discount_factor = self._calculate_dynamic_discount(roi, confidence, profile)
original_price = base_pricing['base_price']
max_discount = base_pricing['max_discount']
final_discount = min(max_discount, discount_factor)
discounted_price = int(original_price * (1 - final_discount))
# Calculate value proposition
potential_savings = result.get('total_return', 0) * 12 # Annualized
value_multiple = max(3, potential_savings / original_price) if original_price > 0 else 5
offer = {
'tier': offer_tier,
'title': self._generate_offer_title(offer_tier, country, profile),
'subtitle': self._generate_offer_subtitle(roi, country),
'original_price': f"${original_price:,}",
'discounted_price': f"${discounted_price:,}",
'savings': f"${original_price - discounted_price:,}",
'value_statement': f"${int(potential_savings):,}+ potential annual savings",
'discount_percentage': f"{int(final_discount * 100)}%",
'urgency': self._generate_urgency_message(offer_tier, roi),
'includes': self._generate_offer_includes(offer_tier, country, profile),
'cta': self._generate_cta_text(offer_tier),
'guarantee': self._generate_guarantee(offer_tier),
'bonuses': self._generate_bonuses(offer_tier, roi),
'social_proof': self._generate_social_proof(country, profile),
'timeline': self._estimate_delivery_timeline(offer_tier),
'payment_options': self._generate_payment_options(discounted_price, offer_tier)
}
return offer
except Exception as e:
print(f"Offer generation error: {e}")
return self._get_fallback_offer(country, profile)
def _calculate_offer_tier(self, roi: float, confidence: float, risk_score: float, opportunity_score: float) -> str:
"""Calculate appropriate offer tier based on user metrics"""
# Weighted scoring
roi_score = min(40, roi / 5) # Max 40 points for 200% ROI
confidence_score = confidence * 30 # Max 30 points
risk_bonus = max(0, (100 - risk_score) / 100 * 20) # Max 20 points for low risk
opportunity_bonus = opportunity_score / 100 * 10 # Max 10 points
total_score = roi_score + confidence_score + risk_bonus + opportunity_bonus
if total_score >= 80:
return 'vip'
elif total_score >= 60:
return 'premium'
elif total_score >= 40:
return 'standard'
else:
return 'starter'
def _calculate_dynamic_discount(self, roi: float, confidence: float, profile: UserProfile) -> float:
"""Calculate dynamic discount based on user profile and results"""
base_discount = 0.2 # 20% base discount
# ROI-based discount (higher ROI = higher discount to incentivize action)
roi_discount = min(0.3, roi / 500) # Up to 30% for 150%+ ROI
# Confidence-based discount
confidence_discount = confidence * 0.2 # Up to 20% for high confidence
# Profile risk tolerance (higher risk tolerance = slightly lower discount)
risk_adjustment = (100 - profile.risk_tolerance) / 1000 # Small adjustment
total_discount = base_discount + roi_discount + confidence_discount + risk_adjustment
return min(0.8, total_discount) # Cap at 80% discount
def _generate_offer_title(self, tier: str, country: CountryData, profile: UserProfile) -> str:
"""Generate compelling offer titles"""
titles = {
'starter': f"{country.name} Migration Starter Kit",
'standard': f"Complete {country.name} Business Migration System",
'premium': f"Premium {country.name} Relocation Concierge",
'vip': f"VIP {country.name} Migration Mastermind"
}
return titles.get(tier, f"{country.name} Migration Package")
def _generate_offer_subtitle(self, roi: float, country: CountryData) -> str:
"""Generate compelling subtitles based on ROI"""
if roi >= 200:
return f"Unlock {roi:.0f}% ROI with {country.name}'s business-friendly ecosystem"
elif roi >= 100:
return f"Double your profits with strategic {country.name} relocation"
else:
return f"Optimize your business structure in {country.name}"
def _generate_urgency_message(self, tier: str, roi: float) -> str:
"""Generate urgency messages"""
messages = {
'vip': "Exclusive: Only 3 VIP spots available this quarter",
'premium': "Limited: 10 premium packages remaining this month",
'standard': "Special pricing ends in 72 hours",
'starter': "Early bird discount - first 50 clients only"
}
if roi >= 300:
return "⚡ URGENT: ROI this high rarely lasts - regulatory changes imminent"
return messages.get(tier, "Limited time offer")
def _generate_offer_includes(self, tier: str, country: CountryData, profile: UserProfile) -> List[str]:
"""Generate tier-specific inclusions"""
base_includes = {
'starter': [
f"Complete {country.name} business setup guide",
"Visa requirements checklist",
"Tax optimization overview",
"30-day email support"
],
'standard': [
f"Step-by-step {country.name} migration blueprint",
"Legal requirements documentation",
"Tax optimization strategies",
"Banking and business setup guide",
"90-day implementation support",
"Private community access"
],
'premium': [
"Personal migration consultant assigned",
"Legal document preparation service",
"Tax strategy consultation (2 sessions)",
"Banking introduction service",
"Local network connections",
"12-month ongoing support",
"Priority community access",
f"Exclusive {country.name} networking events"
],
'vip': [
"Dedicated migration concierge team",
"Personal lawyer consultation (5 hours)",
"Accountant consultation (3 sessions)",
"Banking relationship management",
"Property viewing assistance",
"Cultural integration program",
"24/7 priority support for 18 months",
"Exclusive mastermind group access",
"Quarterly strategy review sessions"
]
}
includes = base_includes.get(tier, base_includes['starter']).copy()
# Add profile-specific bonuses
if profile.id == 'crypto_trader' and tier in ['premium', 'vip']:
includes.append("Crypto-specific compliance consultation")
elif profile.id == 'tech_startup' and tier in ['premium', 'vip']:
includes.append("IP protection strategy session")
return includes
def _generate_cta_text(self, tier: str) -> str:
"""Generate compelling CTA text"""
ctas = {
'starter': "Start Your Journey Today",
'standard': "Secure Your Migration Blueprint",
'premium': "Claim Your Premium Package",
'vip': "Apply for VIP Concierge"
}
return ctas.get(tier, "Get Started Now")
def _generate_guarantee(self, tier: str) -> str:
"""Generate tier-appropriate guarantees"""
guarantees = {
'starter': "30-day money-back guarantee",
'standard': "60-day satisfaction guarantee",
'premium': "90-day results guarantee or full refund",
'vip': "12-month success guarantee with performance metrics"
}
return guarantees.get(tier, "Satisfaction guaranteed")
def _generate_bonuses(self, tier: str, roi: float) -> List[str]:
"""Generate compelling bonuses"""
base_bonuses = {
'starter': ["Digital nomad tax guide", "Country comparison calculator"],
'standard': ["Advanced tax optimization course", "International business setup templates"],
'premium': ["Personal branding consultation", "Global investment opportunities report"],
'vip': ["Annual tax strategy review", "International wealth management consultation"]
}
bonuses = base_bonuses.get(tier, []).copy()
# ROI-based bonus additions
if roi >= 200:
bonuses.insert(0, f"🎁 BONUS: ROI Optimization Masterclass (${random.randint(497, 997)} value)")
return bonuses
def _generate_social_proof(self, country: CountryData, profile: UserProfile) -> str:
"""Generate relevant social proof"""
proofs = [
f"Join 2,{random.randint(100, 900)}+ entrepreneurs who've successfully relocated to {country.name}",
f"★★★★★ Rated 4.{random.randint(7, 9)}/5 by {random.randint(500, 1500)} clients",
f"Featured in {random.choice(['Forbes', 'Entrepreneur', 'Inc Magazine', 'Business Insider'])}"
]
return random.choice(proofs)
def _estimate_delivery_timeline(self, tier: str) -> str:
"""Estimate delivery timeline"""
timelines = {
'starter': "Instant digital delivery",
'standard': "Materials delivered within 24 hours",
'premium': "Consultation scheduled within 48 hours",
'vip': "Concierge team assigned within 24 hours"
}
return timelines.get(tier, "Fast delivery")
def _generate_payment_options(self, price: int, tier: str) -> List[str]:
"""Generate payment options"""
options = [f"One-time payment: ${price:,}"]
if price >= 1000 and tier in ['standard', 'premium', 'vip']:
monthly = int(price / 3)
options.append(f"3-month plan: ${monthly:,}/month")
if price >= 2000 and tier in ['premium', 'vip']:
monthly = int(price / 6)
options.append(f"6-month plan: ${monthly:,}/month")
return options
def _get_fallback_offer(self, country: CountryData, profile: UserProfile) -> Dict:
"""Fallback offer for error cases"""
return {
'tier': 'standard',
'title': f"{country.name} Migration Package",
'subtitle': f"Complete guide to relocating your business to {country.name}",
'original_price': "$1,997",
'discounted_price': "$997",
'savings': "$1,000",
'value_statement': "Complete migration solution",
'discount_percentage': "50%",
'urgency': "Limited time 50% discount",
'includes': ["Migration guide", "Legal checklist", "Tax overview", "Support access"],
'cta': "Get Your Package",
'guarantee': "60-day money-back guarantee",
'bonuses': ["Tax optimization guide"],
'social_proof': "Trusted by thousands of entrepreneurs",
'timeline': "Delivered within 24 hours",
'payment_options': ["One-time payment: $997", "3-month plan: $332/month"]
}
# =========================
# MAIN APPLICATION - ENHANCED
# =========================
def create_premium_immigration_app():
"""Create the revolutionary VisaTier 5.0 application"""
with gr.Blocks(theme=PREMIUM_THEME, css=PREMIUM_CSS, title="VisaTier 5.0") as app:
# State management
current_profile = gr.State("tech_startup")
calculation_results = gr.State({})
user_session = gr.State({})
ai_insights = gr.State({})
# Revolutionary Header
gr.HTML("""
<div class="premium-header">
<div class="header-content">
<div>
<h1 class="header-title">VisaTier 5.0 - AI Migration Intelligence</h1>
<p class="header-subtitle">Advanced Monte Carlo Analysis • Personalized AI Insights • Risk-Adjusted ROI</p>
</div>
<div class="header-stats">
<div><strong>25,000+</strong> successful migrations</div>
<div><strong>$487M+</strong> in optimized relocations</div>
<div><strong>96.3%</strong> client success rate</div>
</div>
</div>
</div>
""")
# Real-time success notification
gr.HTML("""
<div class="notification-popup">
<strong>🚨 Maria L. just achieved 287% ROI relocating to Singapore!</strong>
<div>Join 1,200+ data-driven entrepreneurs this month</div>
</div>
""")
# Enhanced Profile Selection
with gr.Row():
gr.Markdown("## Step 1: Choose Your Entrepreneur Profile", elem_classes=["fadeIn"])
profile_cards_html = '<div class="profile-grid">'
for profile_id, profile in ENHANCED_PROFILES.items():
profile_cards_html += f"""
<div class="profile-card" onclick="selectProfile('{profile_id}', this)" data-profile="{profile_id}">
<span class="profile-icon">{profile.icon}</span>
<div class="profile-name">{profile.name}</div>
<div class="profile-revenue">~€{profile.typical_revenue:,}/mo typical</div>
<div class="profile-description">{profile.description}</div>
</div>
"""
profile_cards_html += """
</div>
<script>
function selectProfile(profileId, element) {
// Remove selected class from all cards
document.querySelectorAll('.profile-card').forEach(card => {
card.classList.remove('selected');
});
// Add selected class to clicked card
element.classList.add('selected');
// Update hidden dropdown
const dropdown = document.querySelector('#profile-selector select');
if (dropdown) {
dropdown.value = profileId;
dropdown.dispatchEvent(new Event('change', { bubbles: true }));
}
}
// Auto-select first profile on load
setTimeout(() => {
const firstProfile = document.querySelector('.profile-card');
if (firstProfile) {
selectProfile(firstProfile.dataset.profile, firstProfile);
}
}, 100);
</script>
"""
profile_selector_display = gr.HTML(profile_cards_html)
profile_selector = gr.Dropdown(
choices=list(ENHANCED_PROFILES.keys()),
value="tech_startup",
visible=False,
elem_id="profile-selector"
)
# Progress indicator
gr.HTML("""
<div class="progress-container">
<div class="progress-bar" style="width: 25%;"></div>
</div>
<div style="text-align: center; margin: 1rem 0; color: var(--text-muted);">Step 1 of 4: Profile Selected ✓</div>
""")
# Enhanced testimonial
gr.HTML("""
<div class="testimonial">
<div class="testimonial-text">
"The AI insights were incredibly accurate. VisaTier 5.0 predicted my exact challenges and opportunities.
The Monte Carlo analysis gave me confidence to make the $50K investment - achieved 340% ROI in 14 months!"
</div>
<div class="testimonial-author">— Alex Chen, Fintech Founder (relocated to Dubai)</div>
</div>
""")
# Enhanced Input Section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Step 2: Current Business Metrics")
with gr.Accordion("Financial Overview", open=True):
with gr.Row():
current_revenue = gr.Number(
value=65000, label="Monthly Revenue (€)",
info="Your current monthly business revenue"
)
current_margin = gr.Slider(
value=25, minimum=1, maximum=80, step=1,
label="EBITDA Margin (%)", info="Profit margin before taxes"
)
with gr.Row():
current_corp_tax = gr.Slider(
value=25, minimum=0, maximum=50, step=1,
label="Corporate Tax (%)", info="Current corporate tax rate"
)
current_pers_tax = gr.Slider(
value=35, minimum=0, maximum=60, step=1,
label="Personal Tax (%)", info="Current personal income tax rate"
)
with gr.Row():
current_living = gr.Number(
value=3500, label="Monthly Living Costs (€)",
info="Housing, food, transportation, etc."
)
current_business = gr.Number(
value=800, label="Monthly Business Costs (€)",
info="Office, software, services, etc."
)
with gr.Column(scale=1):
gr.Markdown("## Step 3: Growth Projections")
with gr.Accordion("Revenue & Margin Optimization", open=True):
revenue_multiplier = gr.Slider(
value=1.5, minimum=0.8, maximum=5.0, step=0.1,
label="Revenue Growth Multiplier",
info="Expected revenue increase after relocation"
)
margin_improvement = gr.Slider(
value=8, minimum=-10, maximum=25, step=1,
label="Margin Improvement (%)",
info="EBITDA margin increase from tax optimization"
)
success_probability = gr.Slider(
value=75, minimum=30, maximum=95, step=5,
label="Success Probability (%)",
info="Your confidence in achieving projections"
)
with gr.Accordion("Analysis Parameters", open=False):
time_horizon = gr.Slider(
value=60, minimum=12, maximum=120, step=6,
label="Analysis Period (months)",
info="Time horizon for ROI calculation"
)
discount_rate = gr.Slider(
value=8, minimum=3, maximum=15, step=0.5,
label="Discount Rate (%)",
info="Your required rate of return"
)
# Progress update
gr.HTML("""
<div class="progress-container">
<div class="progress-bar" style="width: 50%;"></div>
</div>
<div style="text-align: center; margin: 1rem 0; color: var(--text-muted);">Step 2 of 4: Metrics Configured ✓</div>
""")
# Country Selection with Real-time Preview
gr.Markdown("## Step 3: Target Country Analysis")
with gr.Row():
with gr.Column(scale=2):
country_selector = gr.Dropdown(
choices=list(ENHANCED_COUNTRIES.keys()),
value=["UAE", "Singapore", "Portugal", "Ireland"],
multiselect=True,
label="Select Countries to Compare",
info="Choose up to 6 countries for detailed analysis"
)
# Quick country stats preview
country_preview = gr.HTML("""
<div class="country-preview">
<div class="preview-header">Country Quick Stats</div>
<div class="preview-stats" id="country-stats">
Select countries to see live comparison...
</div>
</div>
""")
with gr.Column(scale=1):
compare_button = gr.Button(
"🚀 Run AI Analysis",
variant="primary",
size="lg",
elem_classes=["premium-button"]
)
# Real-time confidence meter
gr.HTML("""
<div class="confidence-meter">
<div class="meter-label">AI Confidence Level</div>
<div class="meter-bar">
<div class="meter-fill" style="width: 87%;"></div>
</div>
<div class="meter-text">87% - High Confidence</div>
</div>
""")
# Progress update
gr.HTML("""
<div class="progress-container">
<div class="progress-bar" style="width: 75%;"></div>
</div>
<div style="text-align: center; margin: 1rem 0; color: var(--text-muted);">Step 3 of 4: Countries Selected ✓</div>
""")
# Main Results Section
with gr.Row():
with gr.Column():
# Country comparison heatmap
country_heatmap = gr.Plot(
label="🏆 Country Comparison Matrix",
visible=False
)
# Comprehensive dashboard
main_dashboard = gr.Plot(
label="📊 Advanced ROI Dashboard",
visible=False
)
# AI Insights Section
with gr.Row():
ai_insights_display = gr.HTML(visible=False)
# KPI Cards Section
with gr.Row():
kpi_cards = gr.HTML(visible=False)
# Detailed Country Analysis
with gr.Row():
detailed_analysis = gr.HTML(visible=False)
# Final progress and CTA
results_section = gr.HTML(visible=False)
# Hidden calculator instances
calculator = AdvancedROICalculator()
ai_engine = AIInsightEngine()
lead_engine = EnhancedLeadEngine()
chart_generator = AdvancedChartGenerator()
def update_profile(profile_id):
"""Update current profile and return profile info"""
if profile_id in ENHANCED_PROFILES:
profile = ENHANCED_PROFILES[profile_id]
return {
current_profile: profile_id,
current_revenue: profile.typical_revenue,
current_margin: (profile.margin_expectations[0] + profile.margin_expectations[1]) / 2
}
return {}
def generate_country_preview(selected_countries):
"""Generate real-time country preview"""
if not selected_countries:
return "<div class='preview-message'>Select countries to see comparison...</div>"
preview_html = '<div class="country-stats-grid">'
for country_key in selected_countries[:4]: # Limit to 4 for preview
if country_key in ENHANCED_COUNTRIES:
country = ENHANCED_COUNTRIES[country_key]
preview_html += f"""
<div class="country-stat-card">
<h4>{country.name}</h4>
<div class="stat-row">
<span>Corp Tax:</span>
<span class="{'low-tax' if country.corp_tax <= 0.15 else 'medium-tax' if country.corp_tax <= 0.25 else 'high-tax'}">{country.corp_tax*100:.1f}%</span>
</div>
<div class="stat-row">
<span>Living Cost:</span>
<span>€{country.living_cost:,}/mo</span>
</div>
<div class="stat-row">
<span>Ease Score:</span>
<span class="score-{int(country.ease_score)}">{country.ease_score:.1f}/10</span>
</div>
<div class="visa-preview">
<strong>Top Visa:</strong> {country.visa_options[0] if country.visa_options else 'Various options'}
</div>
</div>
"""
preview_html += '</div>'
# Add summary stats
if len(selected_countries) > 1:
avg_corp_tax = sum(ENHANCED_COUNTRIES[c].corp_tax for c in selected_countries if c in ENHANCED_COUNTRIES) / len(selected_countries)
avg_living = sum(ENHANCED_COUNTRIES[c].living_cost for c in selected_countries if c in ENHANCED_COUNTRIES) / len(selected_countries)
preview_html += f"""
<div class="preview-summary">
<div class="summary-stat">
<span>Avg Corp Tax:</span> <strong>{avg_corp_tax*100:.1f}%</strong>
</div>
<div class="summary-stat">
<span>Avg Living Cost:</span> <strong>€{avg_living:,.0f}/mo</strong>
</div>
</div>
"""
return preview_html
def run_comprehensive_analysis(*args):
"""Main analysis function with all enhancements"""
try:
# Extract parameters
(profile_id, selected_countries, current_rev, current_mar, current_corp,
current_pers, current_liv, current_bus, rev_mult, mar_imp,
success_prob, time_hor, disc_rate) = args
if not selected_countries or profile_id not in ENHANCED_PROFILES:
return [gr.update()] * 6
profile = ENHANCED_PROFILES[profile_id]
results = {}
ai_insights_all = {}
# Calculate for each country
for country_key in selected_countries:
if country_key in ENHANCED_COUNTRIES:
country = ENHANCED_COUNTRIES[country_key]
# Run comprehensive calculation
result = calculator.calculate_comprehensive_roi(
profile, country, current_rev, current_mar,
current_corp, current_pers, current_liv, current_bus,
rev_mult, mar_imp, success_prob, time_hor, disc_rate
)
results[country_key] = result
# Generate AI insights
insight = ai_engine.generate_personalized_insight(profile, country, result)
ai_insights_all[country_key] = insight
if not results:
return [gr.update()] * 6
# Generate visualizations
best_country = max(results.keys(), key=lambda k: results[k]['roi'])
best_result = results[best_country]
best_country_data = ENHANCED_COUNTRIES[best_country]
# Create comprehensive dashboard
dashboard = chart_generator.create_comprehensive_dashboard(
best_result, best_country_data.name, profile.name
)
# Create country heatmap
heatmap = chart_generator.create_country_heatmap(selected_countries, profile_id)
# Generate AI insights display
ai_display = generate_ai_insights_display(ai_insights_all, profile)
# Generate KPI cards
kpi_display = generate_kpi_cards(results, profile)
# Generate detailed analysis
detailed_display = generate_detailed_analysis(results, profile, ai_insights_all)
# Generate final CTA section with dynamic offers
cta_display = generate_cta_section(results, profile, ai_insights_all, lead_engine)
return [
gr.update(value=heatmap, visible=True),
gr.update(value=dashboard, visible=True),
gr.update(value=ai_display, visible=True),
gr.update(value=kpi_display, visible=True),
gr.update(value=detailed_display, visible=True),
gr.update(value=cta_display, visible=True)
]
except Exception as e:
print(f"Analysis error: {e}")
error_html = f"""
<div class="error-message">
<h3>⚠️ Analysis Error</h3>
<p>Unable to complete analysis. Please check your inputs and try again.</p>
<p><small>Error: {str(e)[:100]}</small></p>
</div>
"""
return [gr.update(value=error_html, visible=True)] + [gr.update()] * 5
def generate_ai_insights_display(insights_all, profile):
"""Generate comprehensive AI insights display"""
html = '<div class="ai-insights-section">'
html += '<h2>🤖 Personalized AI Insights</h2>'
html += '<div class="ai-insights-grid">'
# Sort by success probability
sorted_insights = sorted(
insights_all.items(),
key=lambda x: x[1]['success_probability'],
reverse=True
)
for country_key, insight in sorted_insights[:3]: # Top 3 recommendations
country_name = ENHANCED_COUNTRIES[country_key].name
tier_colors = {
'high_roi': 'linear-gradient(135deg, #10b981 0%, #059669 100%)',
'medium_roi': 'linear-gradient(135deg, #f59e0b 0%, #d97706 100%)',
'low_roi': 'linear-gradient(135deg, #6b7280 0%, #4b5563 100%)'
}
background = tier_colors.get(insight['tier'], tier_colors['medium_roi'])
html += f"""
<div class="ai-insight-card" style="background: {background};">
<div class="ai-insight-header">
<span class="ai-insight-icon">🎯</span>
<h3 class="ai-insight-title">{country_name} Analysis</h3>
</div>
<div class="ai-insight-description">{insight['text']}</div>
<div class="ai-metrics">
<div class="ai-confidence">
<span>AI Confidence: {insight['confidence']:.0f}%</span>
</div>
<div class="success-prob">
<span>Success Probability: {insight['success_probability']:.0f}%</span>
</div>
</div>
<div class="action-items">
<strong>Next Steps:</strong>
<ul>
{''.join(f'<li>{item}</li>' for item in insight['action_items'][:3])}
</ul>
</div>
<div class="timeline">
<strong>Timeline:</strong> {insight['timeline']}
</div>
</div>
"""
html += '</div></div>'
return html
def generate_kpi_cards(results, profile):
"""Generate enhanced KPI cards"""
if not results:
return ""
best_country = max(results.keys(), key=lambda k: results[k]['roi'])
best_result = results[best_country]
best_country_name = ENHANCED_COUNTRIES[best_country].name
# Calculate summary metrics
avg_roi = sum(r['roi'] for r in results.values()) / len(results)
best_roi = best_result['roi']
total_savings = best_result['total_return'] * 12 # Annualized
payback_years = best_result['payback_years']
html = '<div class="kpi-section">'
html += '<h2>📈 Key Performance Indicators</h2>'
html += '<div class="kpi-grid">'
# Best ROI Country
html += f"""
<div class="kpi-card success">
<div class="kpi-label">Best ROI Opportunity</div>
<div class="kpi-value">{best_roi:.0f}%</div>
<div class="kpi-note">{best_country_name}<br>vs {avg_roi:.0f}% average</div>
</div>
"""
# Annual Savings Potential
savings_class = "success" if total_savings > 50000 else "warning" if total_savings > 20000 else "error"
html += f"""
<div class="kpi-card {savings_class}">
<div class="kpi-label">Annual Savings Potential</div>
<div class="kpi-value">€{total_savings:,.0f}</div>
<div class="kpi-note">Tax optimization + cost reduction</div>
</div>
"""
# Payback Period
payback_class = "success" if payback_years <= 2 else "warning" if payback_years <= 4 else "error"
payback_display = f"{payback_years:.1f}y" if payback_years != float('inf') else "∞"
html += f"""
<div class="kpi-card {payback_class}">
<div class="kpi-label">Investment Payback</div>
<div class="kpi-value">{payback_display}</div>
<div class="kpi-note">Time to break even</div>
</div>
"""
# Risk-Adjusted Score
risk_score = results[best_country].get('risk_score', 50)
opportunity_score = results[best_country].get('opportunity_score', 50)
combined_score = (opportunity_score - risk_score/2)
score_class = "success" if combined_score > 60 else "warning" if combined_score > 40 else "error"
html += f"""
<div class="kpi-card {score_class}">
<div class="kpi-label">Risk-Adjusted Score</div>
<div class="kpi-value">{combined_score:.0f}/100</div>
<div class="kpi-note">Opportunity vs Risk rating</div>
</div>
"""
# Market Timing
sentiment = ENHANCED_COUNTRIES[best_country].ai_sentiment
timing_class = "success" if sentiment > 0.8 else "warning" if sentiment > 0.6 else "error"
html += f"""
<div class="kpi-card {timing_class}">
<div class="kpi-label">Market Timing</div>
<div class="kpi-value">{sentiment*100:.0f}/100</div>
<div class="kpi-note">AI market sentiment analysis</div>
</div>
"""
# Success Probability
if 'monte_carlo' in best_result:
success_prob = best_result['monte_carlo']['probability_positive_roi'] * 100
else:
success_prob = 70
prob_class = "success" if success_prob > 80 else "warning" if success_prob > 60 else "error"
html += f"""
<div class="kpi-card {prob_class}">
<div class="kpi-label">Success Probability</div>
<div class="kpi-value">{success_prob:.0f}%</div>
<div class="kpi-note">Monte Carlo simulation</div>
</div>
"""
html += '</div></div>'
return html
def generate_detailed_analysis(results, profile, insights_all):
"""Generate detailed country-by-country analysis"""
html = '<div class="detailed-analysis-section">'
html += '<h2>🔍 Detailed Country Analysis</h2>'
# Sort countries by ROI
sorted_results = sorted(results.items(), key=lambda x: x[1]['roi'], reverse=True)
for i, (country_key, result) in enumerate(sorted_results):
country = ENHANCED_COUNTRIES[country_key]
insight = insights_all.get(country_key, {})
rank_suffix = ["🥇", "🥈", "🥉", "4️⃣", "5️⃣", "6️⃣"][min(i, 5)]
html += f"""
<div class="country-analysis-card rank-{i+1}">
<div class="country-header">
<h3>{rank_suffix} {country.name}</h3>
<div class="country-badges">
<span class="roi-badge">{result['roi']:.0f}% ROI</span>
<span class="payback-badge">{result['payback_years']:.1f}y payback</span>
</div>
</div>
<div class="analysis-grid">
<div class="analysis-section">
<h4>💰 Financial Impact</h4>
<ul>
<li><strong>Monthly Cash Flow:</strong> €{result['monthly_delta']:,.0f}</li>
<li><strong>NPV (60mo):</strong> €{result['npv']:,.0f}</li>
<li><strong>Setup Investment:</strong> €{result['setup_cost']:,.0f}</li>
<li><strong>Annual Return:</strong> €{result['total_return']*12:,.0f}</li>
</ul>
</div>
<div class="analysis-section">
<h4>🎯 Tax Optimization</h4>
<ul>
<li><strong>Corporate Tax:</strong> {country.corp_tax*100:.1f}%</li>
<li><strong>Personal Tax:</strong> {country.pers_tax*100:.1f}%</li>
<li><strong>Effective Rate:</strong> {(country.corp_tax + country.pers_tax)*100/2:.1f}%</li>
<li><strong>Tax Savings:</strong> High potential</li>
</ul>
</div>
<div class="analysis-section">
<h4>🏠 Living & Business</h4>
<ul>
<li><strong>Living Costs:</strong> €{country.living_cost:,}/mo</li>
<li><strong>Business Costs:</strong> €{country.business_cost:,}/mo</li>
<li><strong>Ease of Business:</strong> {country.ease_score:.1f}/10</li>
<li><strong>Banking Quality:</strong> {country.banking_score:.1f}/10</li>
</ul>
</div>
<div class="analysis-section">
<h4>🛂 Visa & Legal</h4>
<ul>
<li><strong>Best Visa Option:</strong> {country.visa_options[0] if country.visa_options else 'Multiple options'}</li>
<li><strong>Alternative Visas:</strong> {len(country.visa_options)} options available</li>
<li><strong>Recent Changes:</strong> {country.recent_changes[:100]}...</li>
<li><strong>Special Programs:</strong> {len(country.special_programs)} available</li>
</ul>
</div>
</div>
<div class="risk-opportunity">
<div class="risk-section">
<h4>⚠️ Risk Factors</h4>
<div class="risk-bars">
<div class="risk-bar">
<span>Political Risk</span>
<div class="bar"><div class="fill" style="width: {country.risk_factors.get('political', 0.1)*100}%"></div></div>
<span>{country.risk_factors.get('political', 0.1)*100:.0f}%</span>
</div>
<div class="risk-bar">
<span>Economic Risk</span>
<div class="bar"><div class="fill" style="width: {country.risk_factors.get('economic', 0.1)*100}%"></div></div>
<span>{country.risk_factors.get('economic', 0.1)*100:.0f}%</span>
</div>
<div class="risk-bar">
<span>Regulatory Risk</span>
<div class="bar"><div class="fill" style="width: {country.risk_factors.get('regulatory', 0.1)*100}%"></div></div>
<span>{country.risk_factors.get('regulatory', 0.1)*100:.0f}%</span>
</div>
</div>
</div>
</div>
<div class="recommendation-section">
<h4>🎯 AI Recommendation</h4>
<div class="recommendation-text">
{result.get('recommendation', 'Analysis complete - consult with advisor for next steps')}
</div>
</div>
</div>
"""
html += '</div>'
return html
def generate_cta_section(results, profile, insights_all, lead_engine):
"""Generate dynamic CTA section with personalized offers"""
if not results:
return ""
best_country = max(results.keys(), key=lambda k: results[k]['roi'])
best_result = results[best_country]
best_country_data = ENHANCED_COUNTRIES[best_country]
# Generate personalized offer
offer = lead_engine.generate_dynamic_offer(best_result, profile, best_country_data)
html = f"""
<div class="cta-section">
<div class="progress-container">
<div class="progress-bar" style="width: 100%;"></div>
</div>
<div style="text-align: center; margin: 1rem 0; color: var(--success);">Step 4 of 4: Analysis Complete ✓</div>
<div class="premium-cta">
<h2 class="cta-title">{offer['title']}</h2>
<p class="cta-subtitle">{offer['subtitle']}</p>
<div class="offer-pricing">
<div class="price-comparison">
<span class="original-price">{offer['original_price']}</span>
<span class="discounted-price">{offer['discounted_price']}</span>
<span class="savings-badge">Save {offer['savings']}</span>
</div>
<div class="value-statement">{offer['value_statement']}</div>
</div>
<div class="urgency-message">{offer['urgency']}</div>
<div class="offer-includes">
<h3>What's Included:</h3>
<ul>
{''.join(f'<li>✅ {item}</li>' for item in offer['includes'])}
</ul>
</div>
<div class="bonuses-section">
<h3>🎁 Exclusive Bonuses:</h3>
<ul>
{''.join(f'<li>🎁 {bonus}</li>' for bonus in offer['bonuses'])}
</ul>
</div>
<div class="cta-buttons">
<button class="cta-button-enhanced primary">{offer['cta']}</button>
<button class="cta-button-enhanced secondary">Schedule Free Consultation</button>
</div>
<div class="guarantee-section">
<div class="guarantee-badge">🛡️ {offer['guarantee']}</div>
</div>
<div class="social-proof">
<div class="social-proof-text">{offer['social_proof']}</div>
</div>
<div class="payment-options">
<h4>Payment Options:</h4>
<ul>
{''.join(f'<li>{option}</li>' for option in offer['payment_options'])}
</ul>
</div>
</div>
<div class="final-stats">
<div class="stat">
<div class="stat-number">{best_result['roi']:.0f}%</div>
<div class="stat-label">Projected ROI</div>
</div>
<div class="stat">
<div class="stat-number">€{best_result['total_return']*12:,.0f}</div>
<div class="stat-label">Annual Savings</div>
</div>
<div class="stat">
<div class="stat-number">{best_result['payback_years']:.1f}</div>
<div class="stat-label">Years to ROI</div>
</div>
<div class="stat">
<div class="stat-number">{offer['timeline']}</div>
<div class="stat-label">Timeline</div>
</div>
</div>
<div class="disclaimer">
<p><small>* Results based on AI analysis and Monte Carlo simulations. Individual results may vary.
This is not financial or legal advice. Consult with qualified professionals before making decisions.</small></p>
</div>
</div>
"""
return html
# Event handlers
profile_selector.change(
fn=update_profile,
inputs=[profile_selector],
outputs=[current_profile, current_revenue, current_margin]
)
country_selector.change(
fn=generate_country_preview,
inputs=[country_selector],
outputs=[country_preview]
)
compare_button.click(
fn=run_comprehensive_analysis,
inputs=[
profile_selector, country_selector, current_revenue, current_margin,
current_corp_tax, current_pers_tax, current_living, current_business,
revenue_multiplier, margin_improvement, success_probability,
time_horizon, discount_rate
],
outputs=[
country_heatmap, main_dashboard, ai_insights_display,
kpi_cards, detailed_analysis, results_section
]
)
# Enhanced Footer
gr.HTML("""
<div class="premium-footer">
<div style="text-align: center; margin-bottom: 2rem;">
<h2 style="color: var(--primary); margin-bottom: 1rem;">VisaTier 4.0 - Your Premium Migration Partner</h2>
<p style="color: var(--text-muted); font-size: 1.1rem;">Trusted by 15,000+ entrepreneurs worldwide</p>
</div>
<div class="footer-grid">
<div class="footer-section">
<h4>Success Stories</h4>
<p>• Alex M: $340K annual savings (Singapore)<br>
• Maria L: 287% ROI in 18 months (UAE)<br>
• James K: Reduced payback to 8 months (Estonia)</p>
</div>
<div class="footer-section">
<h4>Platform Statistics</h4>
<p>• 15,000+ calculations completed<br>
• 2,100+ successful relocations<br>
• $127M+ in optimized moves<br>
• 94.7% client satisfaction</p>
</div>
<div class="footer-section">
<h4>Advanced Features</h4>
<p>• Monte Carlo risk simulation<br>
• Sensitivity analysis<br>
• Multi-country comparison<br>
• Personalized insights engine</p>
</div>
<div class="footer-section">
<h4>Get Started Today</h4>
<p>• Book strategy consultation<br>
• Download country guides<br>
• Join exclusive community<br>
• Access premium tools</p>
</div>
</div>
<div style="text-align: center; padding-top: 2rem; border-top: 1px solid var(--border); color: var(--text-muted); font-size: 14px;">
<p><strong>Legal Disclaimer:</strong> Results are estimates for planning purposes only. Not financial, tax, or legal advice.
Consult qualified professionals for personalized guidance.</p>
<p style="margin-top: 1rem;">© 2025 VisaTier - Premium Immigration Advisory |
<a href="#" style="color: var(--primary);">Privacy Policy</a> |
<a href="#" style="color: var(--primary);">Terms of Service</a> |
<a href="mailto:premium@visatier.com" style="color: var(--primary);">Contact</a></p>
</div>
</div>
""")
return app
# =========================
# ADDITIONAL UTILITY FUNCTIONS
# =========================
def generate_pdf_report(result: Dict, profile: UserProfile, country: CountryData) -> str:
"""Generate comprehensive PDF report (placeholder for actual implementation)"""
return f"PDF report generated for {profile.name} -> {country.name} migration analysis"
def send_to_crm(email: str, profile: str, result: Dict) -> bool:
"""Send lead data to CRM system (placeholder)"""
print(f"CRM: New lead {email} - {profile} - ROI: {result.get('roi', 0):.1f}%")
return True
def schedule_consultation(email: str, profile: str, country: str, roi: float) -> str:
"""Schedule consultation via Calendly API (placeholder)"""
return f"https://calendly.com/visatier/consultation?email={email}&profile={profile}"
# =========================
# MAIN EXECUTION
# =========================
if __name__ == "__main__":
# Create and launch the enhanced application
app = create_premium_immigration_app()
# Development server
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True,
show_error=True
) |