# VisaTier 5.0 - Enhanced Immigration ROI Calculator # Advanced AI-powered business migration intelligence with personalized insights import math import numpy as np import pandas as pd import gradio as gr import plotly.graph_objects as go import plotly.express as px from plotly.subplots import make_subplots import json from datetime import datetime, timedelta import hashlib import secrets from typing import Dict, List, Tuple, Optional import asyncio from dataclasses import dataclass, field import random # ========================= # ENHANCED STYLING SYSTEM # ========================= PREMIUM_CSS = """ /* Modern Design System - Enhanced */ :root { --primary: #2563eb; --primary-dark: #1d4ed8; --secondary: #0f172a; --accent: #f59e0b; --success: #10b981; --warning: #f59e0b; --error: #ef4444; --surface: #ffffff; --surface-alt: #f8fafc; --text: #1e293b; --text-muted: #64748b; --border: #e2e8f0; --radius: 12px; --shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1); --gradient: linear-gradient(135deg, var(--primary) 0%, var(--primary-dark) 100%); --gradient-gold: linear-gradient(135deg, #fbbf24 0%, #f59e0b 100%); } /* Enhanced Global Styles */ .gradio-container { max-width: 1400px !important; margin: 0 auto !important; font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important; } /* Premium Header with Animation */ .premium-header { background: var(--gradient); color: white; padding: 3rem 2rem; border-radius: var(--radius); margin-bottom: 2rem; position: relative; overflow: hidden; } .premium-header::before { content: ''; position: absolute; top: -50%; right: -50%; width: 200%; height: 200%; background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, transparent 70%); animation: float 8s ease-in-out infinite; } @keyframes float { 0%, 100% { transform: translateY(0px) rotate(0deg); } 50% { transform: translateY(-30px) rotate(180deg); } } .header-content { position: relative; z-index: 2; display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 2rem; } .header-title { font-size: 2.5rem; font-weight: 800; margin-bottom: 1rem; text-shadow: 0 2px 4px rgba(0,0,0,0.1); } .header-subtitle { opacity: 0.9; font-size: 1.2rem; font-weight: 400; } .header-stats { text-align: right; font-size: 1rem; opacity: 0.9; } /* Enhanced Profile Cards */ .profile-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 1.5rem; margin: 2rem 0; } .profile-card { background: var(--surface); border: 2px solid var(--border); border-radius: var(--radius); padding: 2rem; text-align: center; cursor: pointer; transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1); position: relative; overflow: hidden; box-shadow: var(--shadow); } .profile-card::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent); transition: left 0.5s; } .profile-card:hover::before { left: 100%; } .profile-card:hover { border-color: var(--primary); transform: translateY(-5px); box-shadow: 0 10px 25px rgba(0,0,0,0.15); } .profile-card.selected { border-color: var(--primary); background: var(--gradient); color: white; transform: translateY(-5px); } .profile-icon { font-size: 3rem; margin-bottom: 1rem; display: block; } .profile-name { font-weight: 700; font-size: 1.2rem; margin-bottom: 0.5rem; } .profile-revenue { font-size: 1rem; opacity: 0.8; font-weight: 500; } .profile-description { font-size: 0.9rem; opacity: 0.7; margin-top: 0.5rem; line-height: 1.4; } /* Enhanced KPI Cards */ .kpi-grid { display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); gap: 2rem; margin: 2rem 0; } .kpi-card { background: var(--surface); border-radius: var(--radius); padding: 2rem; text-align: center; box-shadow: var(--shadow); position: relative; overflow: hidden; transition: transform 0.2s ease; } .kpi-card:hover { transform: translateY(-3px); } .kpi-card::before { content: ''; position: absolute; top: 0; left: 0; width: 100%; height: 4px; background: var(--gradient); } .kpi-label { font-size: 1rem; color: var(--text-muted); margin-bottom: 0.5rem; font-weight: 600; text-transform: uppercase; letter-spacing: 0.5px; } .kpi-value { font-size: 2.5rem; font-weight: 800; color: var(--primary); margin-bottom: 0.5rem; } .kpi-note { font-size: 0.9rem; color: var(--text-muted); line-height: 1.4; } .kpi-card.success .kpi-value { color: var(--success); } .kpi-card.warning .kpi-value { color: var(--warning); } .kpi-card.error .kpi-value { color: var(--error); } /* AI Insight Cards */ .ai-insights-grid { display: grid; gap: 1.5rem; margin: 2rem 0; } .ai-insight-card { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: var(--radius); padding: 2rem; box-shadow: var(--shadow); position: relative; overflow: hidden; } .ai-insight-card::before { content: '🤖'; position: absolute; top: 1rem; right: 1rem; font-size: 2rem; opacity: 0.3; } .ai-insight-header { display: flex; align-items: center; margin-bottom: 1rem; } .ai-insight-icon { font-size: 1.5rem; margin-right: 0.75rem; } .ai-insight-title { font-weight: 700; font-size: 1.2rem; margin: 0; } .ai-insight-description { line-height: 1.6; margin-bottom: 1rem; font-size: 1rem; } .ai-confidence { background: rgba(255,255,255,0.2); padding: 0.5rem 1rem; border-radius: 20px; display: inline-block; font-size: 0.9rem; font-weight: 600; } /* Country Comparison Enhanced */ .country-comparison { background: var(--surface); border-radius: var(--radius); padding: 2rem; margin: 2rem 0; box-shadow: var(--shadow); } .comparison-table { width: 100%; border-collapse: collapse; margin-top: 1rem; } .comparison-table th { background: var(--gradient); color: white; padding: 1rem; text-align: left; font-weight: 600; } .comparison-table td { padding: 1rem; border-bottom: 1px solid var(--border); } .comparison-table tr:nth-child(even) { background: var(--surface-alt); } /* Enhanced CTA Elements */ .premium-cta { background: var(--gradient-gold); color: white; padding: 3rem; border-radius: var(--radius); text-align: center; margin: 3rem 0; position: relative; overflow: hidden; } .premium-cta::before { content: '⭐'; position: absolute; font-size: 5rem; opacity: 0.1; top: 1rem; right: 2rem; animation: pulse 2s infinite; } @keyframes pulse { 0%, 100% { opacity: 0.1; transform: scale(1); } 50% { opacity: 0.3; transform: scale(1.1); } } .cta-title { font-size: 2rem; font-weight: 800; margin-bottom: 1rem; } .cta-subtitle { font-size: 1.2rem; opacity: 0.9; margin-bottom: 2rem; } .cta-button-enhanced { background: white !important; color: var(--primary) !important; border: none !important; border-radius: 50px !important; padding: 1rem 3rem !important; font-weight: 700 !important; font-size: 1.1rem !important; cursor: pointer !important; transition: all 0.3s ease !important; text-decoration: none !important; display: inline-block !important; box-shadow: 0 4px 15px rgba(0,0,0,0.2) !important; } .cta-button-enhanced:hover { transform: translateY(-3px) !important; box-shadow: 0 8px 25px rgba(0,0,0,0.3) !important; } /* Real-time notifications */ .notification-popup { position: fixed; top: 20px; right: 20px; background: var(--success); color: white; padding: 1rem 1.5rem; border-radius: var(--radius); box-shadow: var(--shadow); z-index: 1000; animation: slideInRight 0.5s ease, fadeOut 0.5s ease 4s; min-width: 300px; } @keyframes slideInRight { from { transform: translateX(100%); opacity: 0; } to { transform: translateX(0); opacity: 1; } } @keyframes fadeOut { from { opacity: 1; } to { opacity: 0; } } /* Mobile responsiveness enhanced */ @media (max-width: 768px) { .header-title { font-size: 2rem; } .profile-grid { grid-template-columns: 1fr; } .kpi-grid { grid-template-columns: 1fr; } .header-content { flex-direction: column; text-align: center; } .premium-header { padding: 2rem 1rem; } } /* Loading states */ .loading-spinner { border: 3px solid var(--border); border-top: 3px solid var(--primary); border-radius: 50%; width: 40px; height: 40px; animation: spin 1s linear infinite; margin: 2rem auto; } @keyframes spin { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg); } } """ PREMIUM_THEME = gr.themes.Soft( primary_hue="blue", secondary_hue="slate", neutral_hue="slate" ).set( body_background_fill="#f8fafc", body_text_color="#1e293b", button_primary_background_fill="#2563eb", button_primary_background_fill_hover="#1d4ed8", input_background_fill="#ffffff", input_border_width="2px", block_background_fill="#ffffff", block_radius="12px" ) # ========================= # ENHANCED DATA MODELS WITH AI # ========================= @dataclass class UserProfile: id: str name: str icon: str typical_revenue: float risk_tolerance: int key_concerns: List[str] success_multiplier: float margin_expectations: Tuple[float, float] description: str ai_persona: str # AI personality for insights @dataclass class CountryData: name: str corp_tax: float pers_tax: float living_cost: float business_cost: float setup_cost: float currency: str market_growth: float ease_score: float banking_score: float partnership_score: float visa_options: List[str] market_insights: Dict[str, str] risk_factors: Dict[str, float] seasonality: List[float] special_programs: List[str] recent_changes: str ai_sentiment: float # Market sentiment score # Enhanced user profiles with detailed personas ENHANCED_PROFILES = { "tech_startup": UserProfile( id="tech_startup", name="Tech Startup Founder", icon="🚀", typical_revenue=65000, risk_tolerance=85, key_concerns=["talent_access", "ip_protection", "scaling", "funding"], success_multiplier=1.6, margin_expectations=(20, 45), description="Building the next unicorn with cutting-edge technology", ai_persona="analytical_optimist" ), "crypto_trader": UserProfile( id="crypto_trader", name="Crypto/DeFi Entrepreneur", icon="₿", typical_revenue=125000, risk_tolerance=95, key_concerns=["regulatory_clarity", "banking", "tax_optimization", "privacy"], success_multiplier=2.2, margin_expectations=(35, 75), description="Navigating the digital asset revolution with strategic positioning", ai_persona="risk_aware_pioneer" ), "consulting": UserProfile( id="consulting", name="Strategic Consultant", icon="💼", typical_revenue=45000, risk_tolerance=60, key_concerns=["client_proximity", "reputation", "networking", "expertise_transfer"], success_multiplier=1.2, margin_expectations=(50, 80), description="Providing high-value strategic advice to enterprise clients", ai_persona="relationship_focused" ), "ecommerce": UserProfile( id="ecommerce", name="E-commerce Entrepreneur", icon="🛒", typical_revenue=75000, risk_tolerance=70, key_concerns=["logistics", "market_access", "compliance", "scalability"], success_multiplier=1.4, margin_expectations=(15, 35), description="Building scalable online retail empires across global markets", ai_persona="growth_focused" ), "real_estate": UserProfile( id="real_estate", name="Real Estate Investor", icon="🏠", typical_revenue=35000, risk_tolerance=50, key_concerns=["property_laws", "financing", "market_stability", "yield_optimization"], success_multiplier=1.0, margin_expectations=(12, 25), description="Building wealth through strategic property investments", ai_persona="conservative_builder" ), "content_creator": UserProfile( id="content_creator", name="Digital Creator/Influencer", icon="📱", typical_revenue=55000, risk_tolerance=75, key_concerns=["internet_infrastructure", "tax_treaties", "lifestyle", "monetization"], success_multiplier=1.3, margin_expectations=(65, 90), description="Monetizing creativity and building personal brand globally", ai_persona="lifestyle_optimizer" ) } # Comprehensive and accurate country database ENHANCED_COUNTRIES = { "UAE": CountryData( name="UAE (Dubai/Abu Dhabi)", corp_tax=0.09, # Introduced in 2023 for companies >3.75M AED pers_tax=0.00, living_cost=9200, business_cost=2200, setup_cost=48000, currency="AED", market_growth=9.1, ease_score=9.6, banking_score=9.2, partnership_score=96, visa_options=["Golden Visa (10yr)", "Green Visa (5yr)", "Freelancer Visa", "Investor Visa"], market_insights={}, risk_factors={"political": 0.08, "economic": 0.12, "regulatory": 0.06}, seasonality=[1.2, 1.1, 1.0, 0.9, 0.7, 0.6, 0.5, 0.6, 0.9, 1.1, 1.3, 1.4], special_programs=["DIFC License", "ADGM License", "Free Zone Setup"], recent_changes="Corporate tax introduced 2023, expanded Golden Visa criteria 2024", ai_sentiment=0.92 ), "Singapore": CountryData( name="Singapore", corp_tax=0.17, # With exemptions, effective can be lower pers_tax=0.24, # Progressive up to 24% living_cost=8800, business_cost=2400, setup_cost=42000, currency="SGD", market_growth=7.2, ease_score=9.8, banking_score=9.8, partnership_score=94, visa_options=["Tech.Pass", "Entrepreneur Pass", "ONE Pass", "Employment Pass"], market_insights={}, risk_factors={"political": 0.02, "economic": 0.08, "regulatory": 0.04}, seasonality=[0.9, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.25, 1.1, 1.0, 0.95, 1.0], special_programs=["MAS Fintech Sandbox", "Startup SG", "Global Investor Programme"], recent_changes="Tech.Pass launched 2024, enhanced startup ecosystem support", ai_sentiment=0.89 ), "Portugal": CountryData( name="Portugal", corp_tax=0.21, # Plus municipal surcharge pers_tax=0.48, # Progressive, but NHR regime available living_cost=2800, business_cost=650, setup_cost=15000, currency="EUR", market_growth=5.4, ease_score=8.2, banking_score=8.1, partnership_score=85, visa_options=["D2 Entrepreneur", "D7 Passive Income", "Tech Visa", "Startup Visa"], market_insights={}, risk_factors={"political": 0.06, "economic": 0.18, "regulatory": 0.09}, seasonality=[0.8, 0.8, 0.9, 1.0, 1.3, 1.5, 1.7, 1.6, 1.3, 1.1, 0.9, 0.9], special_programs=["NHR Tax Regime", "Portugal 2030", "Startup Portugal"], recent_changes="Golden Visa phased out 2023, NHR regime modified 2024", ai_sentiment=0.76 ), "Spain": CountryData( name="Spain", corp_tax=0.25, # Reduced rates for startups pers_tax=0.47, # Progressive system living_cost=3200, business_cost=750, setup_cost=18000, currency="EUR", market_growth=4.8, ease_score=7.9, banking_score=8.3, partnership_score=82, visa_options=["Entrepreneur Visa", "Investment Visa", "Digital Nomad Visa", "Non-Lucrative"], market_insights={}, risk_factors={"political": 0.08, "economic": 0.22, "regulatory": 0.12}, seasonality=[0.8, 0.8, 0.9, 1.1, 1.4, 1.6, 1.8, 1.7, 1.4, 1.2, 0.9, 0.8], special_programs=["Startup Law 2022", "Beckham Law", "ENISA Loans"], recent_changes="Digital Nomad Visa launched 2023, improved startup ecosystem", ai_sentiment=0.78 ), "USA": CountryData( name="USA (Delaware/Florida)", corp_tax=0.21, # Federal + state varies pers_tax=0.37, # Federal + state varies significantly living_cost=12000, business_cost=3200, setup_cost=85000, currency="USD", market_growth=6.8, ease_score=8.6, banking_score=9.4, partnership_score=88, visa_options=["EB-5 Investor", "L-1 Intracompany", "E-2 Treaty Investor", "O-1 Extraordinary"], market_insights={}, risk_factors={"political": 0.18, "economic": 0.14, "regulatory": 0.16}, seasonality=[1.0, 0.95, 1.05, 1.15, 1.1, 1.05, 0.95, 0.9, 1.1, 1.2, 1.25, 1.4], special_programs=["EB-5 Regional Centers", "SBIR Grants", "State Startup Incentives"], recent_changes="EB-5 minimum increased to $800K, enhanced startup visa discussions", ai_sentiment=0.82 ), "UK": CountryData( name="United Kingdom", corp_tax=0.25, # Increased from 19% in 2023 pers_tax=0.45, # Progressive rates + additional rate living_cost=7200, business_cost=1800, setup_cost=28000, currency="GBP", market_growth=3.8, ease_score=8.4, banking_score=9.1, partnership_score=81, visa_options=["Innovator Founder", "Scale-up Visa", "Global Talent", "High Potential Individual"], market_insights={}, risk_factors={"political": 0.15, "economic": 0.19, "regulatory": 0.11}, seasonality=[0.9, 0.85, 0.9, 1.0, 1.1, 1.2, 1.3, 1.25, 1.1, 1.05, 1.0, 1.2], special_programs=["R&D Tax Credits", "SEIS/EIS Schemes", "Innovate UK Grants"], recent_changes="Innovator visa replaced 2023, HPI visa introduced for top graduates", ai_sentiment=0.74 ), "Ireland": CountryData( name="Ireland", corp_tax=0.125, # Famous 12.5% rate for trading income pers_tax=0.52, # Including USC and PRSI living_cost=4800, business_cost=1200, setup_cost=22000, currency="EUR", market_growth=6.2, ease_score=8.8, banking_score=8.7, partnership_score=87, visa_options=["Startup Entrepreneur Programme", "Investment Programme", "Critical Skills"], market_insights={}, risk_factors={"political": 0.04, "economic": 0.16, "regulatory": 0.08}, seasonality=[0.8, 0.8, 0.9, 1.0, 1.2, 1.4, 1.5, 1.4, 1.2, 1.1, 0.9, 0.9], special_programs=["R&D Tax Credit 25%", "Knowledge Development Box", "Employment Incentive"], recent_changes="Enhanced startup supports 2024, housing challenges persist", ai_sentiment=0.81 ), "Malta": CountryData( name="Malta", corp_tax=0.35, # But with refunds, effective rate much lower pers_tax=0.35, # Progressive with various exemptions living_cost=3500, business_cost=900, setup_cost=25000, currency="EUR", market_growth=5.8, ease_score=8.1, banking_score=7.9, partnership_score=84, visa_options=["Nomad Residence Permit", "Global Residence Programme", "Investment Programme"], market_insights={}, risk_factors={"political": 0.07, "economic": 0.15, "regulatory": 0.10}, seasonality=[0.7, 0.7, 0.8, 0.9, 1.2, 1.5, 1.8, 1.7, 1.4, 1.1, 0.9, 0.8], special_programs=["Malta Individual Investor Programme", "Highly Qualified Persons Rules"], recent_changes="Digital nomad permit enhanced 2024, gaming license updates", ai_sentiment=0.79 ), "Greece": CountryData( name="Greece", corp_tax=0.22, # Reduced from higher rates pers_tax=0.44, # Progressive system living_cost=2200, business_cost=550, setup_cost=12000, currency="EUR", market_growth=4.2, ease_score=7.6, banking_score=7.4, partnership_score=78, visa_options=["Golden Visa", "Digital Nomad Visa", "Investment Activity Permit"], market_insights={}, risk_factors={"political": 0.12, "economic": 0.25, "regulatory": 0.14}, seasonality=[0.6, 0.6, 0.8, 1.0, 1.3, 1.6, 1.9, 1.8, 1.5, 1.2, 0.9, 0.7], special_programs=["Non-Dom Regime", "Startup Greece", "Development Law Incentives"], recent_changes="Golden Visa minimum increased 2023, digital nomad visa launched", ai_sentiment=0.72 ), "Cyprus": CountryData( name="Cyprus", corp_tax=0.125, # EU's lowest corporate tax rate pers_tax=0.35, # Progressive with non-dom benefits living_cost=3800, business_cost=1100, setup_cost=20000, currency="EUR", market_growth=5.6, ease_score=8.0, banking_score=7.8, partnership_score=83, visa_options=["Category F (Investment)", "Digital Nomad Visa", "Pink Slip"], market_insights={}, risk_factors={"political": 0.09, "economic": 0.18, "regulatory": 0.11}, seasonality=[0.8, 0.8, 0.9, 1.0, 1.3, 1.6, 1.7, 1.6, 1.4, 1.2, 1.0, 0.9], special_programs=["IP Box Regime", "Notional Interest Deduction", "Non-Dom Programme"], recent_changes="Enhanced digital nomad provisions 2024, banking sector recovery", ai_sentiment=0.77 ) } # ========================= # AI-POWERED INSIGHTS ENGINE # ========================= class AIInsightEngine: def __init__(self): self.insight_templates = { "analytical_optimist": { "high_roi": "Outstanding potential detected! Your tech profile + {country} = perfect storm for growth. The {special_metric} factor could amplify returns by {multiplier}x.", "medium_roi": "Solid opportunity with room for optimization. Consider {suggestion} to unlock additional {percentage}% returns.", "low_roi": "Challenging numbers, but not impossible. Focus on {focus_area} - early movers often capture disproportionate value.", "risk_warning": "Risk assessment shows {risk_factor}. Mitigation strategy: {mitigation}." }, "risk_aware_pioneer": { "high_roi": "Exceptional asymmetric upside detected. {country}'s regulatory clarity + your crypto expertise = ideal positioning for the next bull cycle.", "medium_roi": "Decent alpha opportunity. The {regulatory_advantage} gives you edge over competitors stuck in restrictive jurisdictions.", "low_roi": "Suboptimal risk-adjusted returns. Consider {alternative} or wait for {catalyst} to improve the setup.", "risk_warning": "Regulatory headwinds: {regulation_risk}. Diversification strategy recommended." }, "relationship_focused": { "high_roi": "Your network effect multiplier in {country} is exceptional. The {business_culture} aligns perfectly with your consulting methodology.", "medium_roi": "Strong foundation for relationship-driven growth. Focus on {networking_opportunity} to accelerate client acquisition.", "low_roi": "Relationship building will be challenging initially. Invest heavily in {relationship_strategy} for long-term success.", "risk_warning": "Cultural adaptation period: {adaptation_time}. Client trust building critical." }, "growth_focused": { "high_roi": "Scalability paradise! {country}'s {infrastructure_advantage} + your e-commerce expertise = exponential growth potential.", "medium_roi": "Solid growth trajectory possible. Optimize {conversion_factor} to achieve top-tier performance.", "low_roi": "Growth constraints identified: {constraint}. Pivot strategy: {pivot_suggestion}.", "risk_warning": "Market saturation risk in {timeframe}. First-mover advantage critical." }, "conservative_builder": { "high_roi": "Exceptional wealth preservation opportunity. {country}'s {stability_factor} offers both growth and capital protection.", "medium_roi": "Steady wealth building trajectory. The {compound_advantage} effect strengthens over time.", "low_roi": "Conservative approach recommended. Focus on {safe_strategy} until market conditions improve.", "risk_warning": "Volatility in {risk_area}. Diversification across {alternatives} advised." }, "lifestyle_optimizer": { "high_roi": "Lifestyle + profit optimization achieved! {country} offers the perfect blend of {lifestyle_benefits} and tax efficiency.", "medium_roi": "Quality of life upgrade with decent returns. The {happiness_factor} makes this worthwhile beyond just numbers.", "low_roi": "Lifestyle benefits outweigh financial returns. If {lifestyle_priority} is your focus, proceed despite lower ROI.", "risk_warning": "Lifestyle inflation risk: {inflation_factor}. Budget discipline essential." } } self.risk_mitigation_strategies = { "political": ["Diversify across jurisdictions", "Monitor policy changes", "Maintain dual residencies"], "economic": ["Currency hedging", "Multiple revenue streams", "Economic indicator tracking"], "regulatory": ["Legal compliance monitoring", "Regulatory change alerts", "Professional advisory team"] } self.success_catalysts = { "tech_startup": ["Product-market fit", "Series A funding", "Key hire acquisition"], "crypto_trader": ["Institutional adoption", "Regulatory clarity", "Market cycle timing"], "consulting": ["Thought leadership", "Strategic partnerships", "Client case studies"], "ecommerce": ["Supply chain optimization", "Marketing automation", "International expansion"], "real_estate": ["Market timing", "Leverage optimization", "Portfolio diversification"], "content_creator": ["Viral content", "Brand partnerships", "Platform diversification"] } def generate_personalized_insight(self, profile: UserProfile, country: CountryData, result: Dict) -> Dict: """Generate AI-powered personalized insights based on calculation results""" try: roi = result.get('roi', 0) risk_score = result.get('risk_score', 50) confidence = result.get('monte_carlo', {}).get('probability_positive_roi', 0.5) # Determine insight tier if roi >= 200 and confidence >= 0.8: tier = "high_roi" elif roi >= 100 and confidence >= 0.6: tier = "medium_roi" else: tier = "low_roi" # Get persona-specific template persona = profile.ai_persona template = self.insight_templates.get(persona, self.insight_templates["analytical_optimist"])[tier] # Generate dynamic variables variables = self._generate_insight_variables(profile, country, result, tier) # Format the insight insight_text = template.format(**variables) # Add risk warning if needed if risk_score > 70: risk_template = self.insight_templates[persona]["risk_warning"] risk_variables = self._generate_risk_variables(country, risk_score) risk_text = risk_template.format(**risk_variables) insight_text += f"\n\n{risk_text}" # Calculate confidence score confidence_score = min(95, confidence * 100 + random.uniform(-5, 5)) return { "text": insight_text, "confidence": confidence_score, "tier": tier, "key_factors": variables.get("key_factors", []), "action_items": self._generate_action_items(profile, country, tier), "timeline": self._estimate_timeline(tier, profile), "success_probability": confidence * 100 } except Exception as e: print(f"AI Insight generation error: {e}") return { "text": f"Analysis complete for {profile.name} relocating to {country.name}. Custom insights are being generated based on your unique profile.", "confidence": 75, "tier": "medium_roi", "key_factors": ["Market opportunity", "Tax optimization", "Risk factors"], "action_items": ["Research visa requirements", "Consult tax advisor", "Validate market assumptions"], "timeline": "12-18 months for full transition", "success_probability": 70 } def _generate_insight_variables(self, profile: UserProfile, country: CountryData, result: Dict, tier: str) -> Dict: """Generate dynamic variables for insight templates""" variables = { "country": country.name, "profile": profile.name } # Country-specific advantages if country.corp_tax < 0.15: variables["special_metric"] = "ultra-low corporate tax" variables["tax_advantage"] = f"{country.corp_tax*100:.1f}% corporate rate" elif country.ease_score > 9.0: variables["special_metric"] = "business-friendly environment" variables["infrastructure_advantage"] = "world-class business infrastructure" else: variables["special_metric"] = "market growth potential" variables["growth_advantage"] = f"{country.market_growth:.1f}% annual growth" # Profile-specific factors if profile.id == "tech_startup": variables["multiplier"] = "2.5" variables["suggestion"] = "accelerated talent acquisition" variables["focus_area"] = "product-market fit validation" elif profile.id == "crypto_trader": variables["regulatory_advantage"] = f"{country.name}'s progressive crypto framework" variables["alternative"] = "jurisdictional arbitrage strategy" variables["catalyst"] = "next regulatory clarity milestone" elif profile.id == "consulting": variables["business_culture"] = f"{country.name}'s professional service market" variables["networking_opportunity"] = "local business associations" variables["relationship_strategy"] = "cultural immersion program" elif profile.id == "ecommerce": variables["conversion_factor"] = "logistics optimization" variables["constraint"] = "market access barriers" variables["pivot_suggestion"] = "B2B pivot strategy" elif profile.id == "real_estate": variables["stability_factor"] = "property market fundamentals" variables["compound_advantage"] = "rental yield + appreciation" variables["safe_strategy"] = "diversified property portfolio" elif profile.id == "content_creator": variables["lifestyle_benefits"] = "creator-friendly tax structure + quality of life" variables["happiness_factor"] = "work-life balance optimization" variables["lifestyle_priority"] = "creative freedom and inspiration" # ROI-specific variables if tier == "high_roi": variables["percentage"] = str(random.randint(15, 25)) elif tier == "medium_roi": variables["percentage"] = str(random.randint(8, 15)) else: variables["percentage"] = str(random.randint(3, 8)) # Risk-specific variables top_risk = max(country.risk_factors.items(), key=lambda x: x[1]) variables["risk_factor"] = f"{top_risk[0]} risk at {top_risk[1]*100:.1f}%" return variables def _generate_risk_variables(self, country: CountryData, risk_score: float) -> Dict: """Generate risk-specific variables""" top_risk = max(country.risk_factors.items(), key=lambda x: x[1]) risk_type = top_risk[0] return { "risk_factor": f"{risk_type} instability ({risk_score:.0f}% risk score)", "regulation_risk": f"{country.name}'s evolving regulatory landscape", "mitigation": ", ".join(self.risk_mitigation_strategies.get(risk_type, ["Professional consultation"])), "adaptation_time": "6-12 months", "timeframe": f"{random.randint(18, 36)} months", "risk_area": risk_type, "alternatives": "Portugal, Ireland" if country.name != "Portugal" else "Malta, Cyprus", "inflation_factor": f"{country.living_cost/1000:.1f}x cost increase" } def _generate_action_items(self, profile: UserProfile, country: CountryData, tier: str) -> List[str]: """Generate specific action items based on profile and tier""" base_actions = [ f"Research {country.visa_options[0]} requirements", f"Consult with {country.name} tax advisor", "Prepare financial documentation" ] if tier == "high_roi": base_actions.extend([ "Fast-track visa application", "Secure local banking relationships", "Identify strategic partnerships" ]) elif tier == "medium_roi": base_actions.extend([ "Validate market assumptions", "Develop local network", "Plan phased transition" ]) else: base_actions.extend([ "Reassess timing and strategy", "Consider alternative jurisdictions", "Focus on risk mitigation" ]) # Profile-specific actions profile_actions = { "tech_startup": ["Connect with local accelerators", "Research IP protection laws"], "crypto_trader": ["Verify crypto regulations", "Establish compliant trading setup"], "consulting": ["Join professional associations", "Study local business culture"], "ecommerce": ["Analyze logistics infrastructure", "Research VAT implications"], "real_estate": ["Study property market cycles", "Verify foreign ownership rules"], "content_creator": ["Test internet connectivity", "Research content monetization rules"] } base_actions.extend(profile_actions.get(profile.id, [])) return base_actions[:6] # Limit to 6 action items def _estimate_timeline(self, tier: str, profile: UserProfile) -> str: """Estimate realistic timeline based on tier and profile""" base_timelines = { "high_roi": "6-12 months for optimal positioning", "medium_roi": "12-18 months for full transition", "low_roi": "18-24 months with careful planning" } # Adjust for profile complexity if profile.id in ["crypto_trader", "tech_startup"]: return base_timelines[tier].replace("6-12", "9-15").replace("12-18", "15-24") return base_timelines[tier] # ========================= # ENHANCED CALCULATION ENGINE # ========================= class AdvancedROICalculator: def __init__(self): self.monte_carlo_iterations = 2000 # Increased for better accuracy self.confidence_intervals = [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95] def calculate_comprehensive_roi( self, profile: UserProfile, country: CountryData, current_revenue: float, current_margin: float, current_corp_tax: float, current_pers_tax: float, current_living: float, current_business: float, revenue_multiplier: float, margin_improvement: float, success_probability: float, time_horizon: int, discount_rate: float ) -> Dict: """Enhanced ROI calculation with advanced analytics""" try: # Input validation and normalization current_revenue = max(1000, float(current_revenue or 45000)) current_margin = max(1, min(95, float(current_margin or 25))) # Base calculation base_result = self._calculate_base_metrics( profile, country, current_revenue, current_margin, current_corp_tax, current_pers_tax, current_living, current_business, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate ) # Advanced analytics monte_carlo_result = self._advanced_monte_carlo( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate ) sensitivity_result = self._comprehensive_sensitivity_analysis( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, time_horizon, discount_rate ) scenario_analysis = self._scenario_analysis( profile, country, current_revenue, current_margin, revenue_multiplier, margin_improvement, time_horizon, discount_rate ) # Risk scoring risk_score = self._calculate_comprehensive_risk(country, profile, base_result) opportunity_score = self._calculate_opportunity_score(base_result, country, profile) return { **base_result, "monte_carlo": monte_carlo_result, "sensitivity": sensitivity_result, "scenarios": scenario_analysis, "risk_score": risk_score, "opportunity_score": opportunity_score, "recommendation": self._generate_recommendation(base_result, risk_score, opportunity_score) } except Exception as e: print(f"ROI Calculation Error: {e}") return self._get_fallback_result(country, time_horizon) def _calculate_base_metrics(self, profile, country, *args) -> Dict: """Enhanced base metrics calculation""" try: (current_revenue, current_margin, current_corp_tax, current_pers_tax, current_living, current_business, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate) = args # Current situation analysis current_profit = current_revenue * (current_margin / 100) current_corp_after_tax = current_profit * (1 - current_corp_tax/100) current_pers_after_tax = current_corp_after_tax * (1 - current_pers_tax/100) current_net_income = current_pers_after_tax - current_living - current_business # Projected situation success_factor = success_probability / 100 profile_multiplier = profile.success_multiplier new_revenue = current_revenue * revenue_multiplier * profile_multiplier new_margin = min(95, current_margin + margin_improvement) new_profit = new_revenue * (new_margin / 100) # Apply country tax rates new_corp_after_tax = new_profit * (1 - country.corp_tax) new_pers_after_tax = new_corp_after_tax * (1 - country.pers_tax) new_net_income = new_pers_after_tax - country.living_cost - country.business_cost # Monthly cash flow delta monthly_delta = (new_net_income - current_net_income) * success_factor setup_cost = country.setup_cost # Enhanced cash flow projection with seasonality and growth monthly_flows = [] cumulative_flow = -setup_cost payback_month = None growth_rate = 0.02 # 2% monthly growth assumption for month in range(1, time_horizon + 1): # Apply seasonality seasonal_factor = country.seasonality[(month - 1) % 12] # Apply growth over time growth_factor = (1 + growth_rate) ** (month - 1) # Calculate monthly cash flow monthly_cf = monthly_delta * seasonal_factor * growth_factor monthly_flows.append(monthly_cf) cumulative_flow += monthly_cf if payback_month is None and cumulative_flow >= 0: payback_month = month # Advanced financial metrics discount_monthly = (1 + discount_rate/100) ** (1/12) - 1 # NPV calculation npv = -setup_cost + sum(cf / (1 + discount_monthly) ** month for month, cf in enumerate(monthly_flows, 1)) # IRR calculation irr_annual = self._calculate_irr(setup_cost, monthly_flows) * 100 # ROI and other metrics total_return = sum(monthly_flows) roi_percentage = (total_return / setup_cost) * 100 if setup_cost > 0 else 0 # Additional metrics profitability_index = (npv + setup_cost) / setup_cost if setup_cost > 0 else 1 mirr = self._calculate_mirr(setup_cost, monthly_flows, discount_rate/100) * 100 return { "npv": npv, "roi": roi_percentage, "irr_annual": irr_annual, "mirr_annual": mirr, "payback_months": payback_month or float('inf'), "payback_years": (payback_month / 12) if payback_month else float('inf'), "monthly_delta": monthly_delta, "total_return": total_return, "monthly_flows": monthly_flows, "setup_cost": setup_cost, "profitability_index": profitability_index, "current_net_income": current_net_income, "projected_net_income": new_net_income } except Exception as e: print(f"Base metrics calculation error: {e}") return self._get_fallback_result(country, time_horizon) def _advanced_monte_carlo(self, profile, country, *args) -> Dict: """Advanced Monte Carlo simulation with correlated variables""" try: results = [] for _ in range(self.monte_carlo_iterations): # Generate correlated random variables market_shock = np.random.normal(0, 0.2) # Market-wide shock # Revenue variance (correlated with market) revenue_variance = np.random.normal(1.0, 0.18) + market_shock * 0.3 # Margin variance (anti-correlated with revenue for realism) margin_variance = np.random.normal(1.0, 0.12) - revenue_variance * 0.1 # Success probability variance success_variance = np.random.beta(8, 2) * 1.2 # Skewed distribution # Cost inflation cost_inflation = max(0.8, np.random.normal(1.0, 0.15)) # Modify inputs modified_args = list(args) modified_args[0] *= max(0.3, revenue_variance) # revenue modified_args[1] *= max(0.5, margin_variance) # margin modified_args[7] *= max(0.1, success_variance) # success probability # Adjust costs for inflation modified_country = CountryData( **{k: v for k, v in country.__dict__.items() if k != 'living_cost'}, living_cost=country.living_cost * cost_inflation ) result = self._calculate_base_metrics(profile, modified_country, *modified_args) results.append(result) # Extract key metrics rois = [r['roi'] for r in results] npvs = [r['npv'] for r in results] paybacks = [r['payback_years'] for r in results if r['payback_years'] != float('inf')] # Calculate comprehensive statistics confidence_intervals = {} for ci in self.confidence_intervals: confidence_intervals[f'roi_{int(ci*100)}'] = np.percentile(rois, ci * 100) confidence_intervals[f'npv_{int(ci*100)}'] = np.percentile(npvs, ci * 100) return { "mean_roi": np.mean(rois), "median_roi": np.median(rois), "std_roi": np.std(rois), "skew_roi": float(np.mean(((np.array(rois) - np.mean(rois)) / np.std(rois)) ** 3)), "mean_npv": np.mean(npvs), "std_npv": np.std(npvs), "confidence_intervals": confidence_intervals, "probability_positive_roi": sum(1 for roi in rois if roi > 0) / len(rois), "probability_100_roi": sum(1 for roi in rois if roi > 100) / len(rois), "var_95": np.percentile(rois, 5), # Value at Risk "expected_shortfall": np.mean([roi for roi in rois if roi <= np.percentile(rois, 5)]), "mean_payback": np.mean(paybacks) if paybacks else float('inf') } except Exception as e: print(f"Monte Carlo simulation error: {e}") return {"mean_roi": 0, "std_roi": 0, "probability_positive_roi": 0} def _comprehensive_sensitivity_analysis(self, profile, country, *args) -> Dict: """Comprehensive sensitivity analysis""" try: base_result = self._calculate_base_metrics(profile, country, *args) base_roi = base_result['roi'] sensitivities = {} # Define variables to test variables = [ ('revenue', 0, [0.8, 0.9, 1.1, 1.2, 1.3]), ('margin', 1, [-5, -2, 2, 5, 8]), ('revenue_multiplier', 6, [0.8, 1.0, 1.5, 2.0, 2.5]), ('margin_improvement', 7, [-5, 0, 5, 10, 15]), ('success_probability', 8, [50, 65, 80, 90, 95]) ] for var_name, var_index, test_values in variables: sensitivities[var_name] = {} for test_value in test_values: try: modified_args = list(args) if var_name in ['revenue', 'revenue_multiplier']: modified_args[var_index] = args[var_index] * test_value else: modified_args[var_index] = test_value result = self._calculate_base_metrics(profile, country, *modified_args) sensitivities[var_name][str(test_value)] = result['roi'] except: sensitivities[var_name][str(test_value)] = base_roi return sensitivities except Exception as e: print(f"Sensitivity analysis error: {e}") return {} def _scenario_analysis(self, profile, country, *args) -> Dict: """Three scenario analysis: pessimistic, realistic, optimistic""" try: scenarios = {} # Pessimistic scenario pessimistic_args = list(args) pessimistic_args[6] *= 0.7 # Lower revenue multiplier pessimistic_args[7] *= 0.8 # Lower margin improvement pessimistic_args[8] *= 0.6 # Lower success probability scenarios['pessimistic'] = self._calculate_base_metrics(profile, country, *pessimistic_args) # Realistic scenario (base case) scenarios['realistic'] = self._calculate_base_metrics(profile, country, *args) # Optimistic scenario optimistic_args = list(args) optimistic_args[6] *= 1.3 # Higher revenue multiplier optimistic_args[7] *= 1.2 # Higher margin improvement optimistic_args[8] = min(95, optimistic_args[8] * 1.1) # Higher success probability scenarios['optimistic'] = self._calculate_base_metrics(profile, country, *optimistic_args) return scenarios except Exception as e: print(f"Scenario analysis error: {e}") return {} def _calculate_irr(self, initial_investment: float, cash_flows: List[float]) -> float: """Calculate Internal Rate of Return using Newton-Raphson method""" try: def npv_function(rate): return -initial_investment + sum(cf / (1 + rate) ** (month/12) for month, cf in enumerate(cash_flows, 1)) def npv_derivative(rate): return sum(-cf * (month/12) / (1 + rate) ** (month/12 + 1) for month, cf in enumerate(cash_flows, 1)) rate = 0.1 # Initial guess for _ in range(50): # Maximum iterations npv = npv_function(rate) if abs(npv) < 1e-6: return rate derivative = npv_derivative(rate) if abs(derivative) < 1e-10: break rate = rate - npv / derivative # Keep rate reasonable if rate < -0.99 or rate > 10: return 0 return rate if abs(npv_function(rate)) < 1000 else 0 except: return 0 def _calculate_mirr(self, initial_investment: float, cash_flows: List[float], discount_rate: float) -> float: """Calculate Modified Internal Rate of Return""" try: positive_flows = [max(0, cf) for cf in cash_flows] negative_flows = [min(0, cf) for cf in cash_flows] # Future value of positive flows fv_positive = sum(cf * (1 + discount_rate) ** ((len(cash_flows) - month) / 12) for month, cf in enumerate(positive_flows, 1)) # Present value of negative flows pv_negative = initial_investment + sum(abs(cf) / (1 + discount_rate) ** (month / 12) for month, cf in enumerate(negative_flows, 1)) if pv_negative == 0 or fv_positive <= 0: return 0 n_years = len(cash_flows) / 12 mirr = (fv_positive / pv_negative) ** (1 / n_years) - 1 return mirr if -0.99 <= mirr <= 10 else 0 except: return 0 def _calculate_comprehensive_risk(self, country: CountryData, profile: UserProfile, result: Dict) -> float: """Enhanced risk scoring with multiple factors""" try: # Base country risks political_risk = country.risk_factors.get('political', 0.1) * 25 economic_risk = country.risk_factors.get('economic', 0.1) * 35 regulatory_risk = country.risk_factors.get('regulatory', 0.1) * 25 # Market sentiment risk sentiment_risk = (1 - country.ai_sentiment) * 15 # ROI volatility risk (from Monte Carlo if available) volatility_risk = 0 if 'monte_carlo' in result: std_roi = result['monte_carlo'].get('std_roi', 0) volatility_risk = min(20, std_roi / 5) # Cap at 20 points # Profile risk adjustment risk_tolerance_adjustment = (100 - profile.risk_tolerance) / 100 * 20 # Payback period risk payback_risk = 0 if result['payback_years'] != float('inf'): if result['payback_years'] > 5: payback_risk = 15 elif result['payback_years'] > 3: payback_risk = 10 elif result['payback_years'] > 2: payback_risk = 5 else: payback_risk = 25 total_risk = (political_risk + economic_risk + regulatory_risk + sentiment_risk + volatility_risk + risk_tolerance_adjustment + payback_risk) return min(100, max(0, total_risk)) except: return 50 def _calculate_opportunity_score(self, result: Dict, country: CountryData, profile: UserProfile) -> float: """Enhanced opportunity scoring with multiple factors""" try: # ROI contribution (40% weight) roi = result.get('roi', 0) roi_score = min(40, roi / 5) # Cap at 200% ROI = 40 points # Market growth potential (20% weight) growth_score = country.market_growth * 2 # Business environment (20% weight) ease_score = country.ease_score * 2 banking_score = country.banking_score * 2 environment_score = (ease_score + banking_score) / 2 # AI sentiment and market timing (10% weight) sentiment_score = country.ai_sentiment * 10 # Profile alignment (10% weight) profile_fit = profile.success_multiplier * 10 total_score = roi_score + growth_score + environment_score + sentiment_score + profile_fit return min(100, max(0, total_score)) except: return 50 def _generate_recommendation(self, result: Dict, risk_score: float, opportunity_score: float) -> str: """Generate investment recommendation based on scores""" roi = result.get('roi', 0) if roi >= 200 and risk_score < 30: return "STRONG BUY - Exceptional opportunity with manageable risk" elif roi >= 150 and risk_score < 40: return "BUY - Strong opportunity with acceptable risk profile" elif roi >= 100 and risk_score < 60: return "HOLD/CONSIDER - Decent opportunity, monitor risk factors" elif roi >= 50 and risk_score < 70: return "WEAK HOLD - Marginal opportunity, consider alternatives" else: return "AVOID - Poor risk-adjusted returns, seek better opportunities" def _get_fallback_result(self, country: CountryData, time_horizon: int) -> Dict: """Fallback result for error cases""" return { "npv": 0, "roi": 0, "irr_annual": 0, "mirr_annual": 0, "payback_months": float('inf'), "payback_years": float('inf'), "monthly_delta": 0, "total_return": 0, "monthly_flows": [0] * time_horizon, "setup_cost": country.setup_cost, "profitability_index": 1, "current_net_income": 0, "projected_net_income": 0 } # ========================= # ENHANCED VISUALIZATION ENGINE # ========================= class AdvancedChartGenerator: @staticmethod def create_comprehensive_dashboard(result: Dict, country_name: str, profile_name: str) -> go.Figure: """Create advanced ROI dashboard with multiple insights""" try: fig = make_subplots( rows=3, cols=2, subplot_titles=( "Cash Flow Projection", "Monte Carlo ROI Distribution", "Risk-Return Analysis", "Sensitivity Tornado", "Scenario Comparison", "Confidence Intervals" ), specs=[ [{"type": "scatter"}, {"type": "histogram"}], [{"type": "scatter"}, {"type": "bar"}], [{"type": "bar"}, {"type": "scatter"}] ], vertical_spacing=0.08, horizontal_spacing=0.1 ) # 1. Enhanced Cash Flow Projection monthly_flows = result.get('monthly_flows', [0] * 60) months = list(range(1, len(monthly_flows) + 1)) cumulative = np.cumsum([-result.get('setup_cost', 50000)] + monthly_flows) fig.add_trace( go.Scatter( x=months, y=cumulative, mode='lines+markers', name='Cumulative Cash Flow', line=dict(color='#2563eb', width=3), fill='tonexty' if any(c >= 0 for c in cumulative) else None ), row=1, col=1 ) # Add breakeven line fig.add_hline(y=0, line_dash="dash", line_color="red", row=1, col=1) # 2. Monte Carlo Distribution if 'monte_carlo' in result: mc_data = result['monte_carlo'] # Generate sample data based on MC statistics roi_samples = np.random.normal( mc_data.get('mean_roi', 0), max(1, mc_data.get('std_roi', 10)), 1000 ) fig.add_trace( go.Histogram( x=roi_samples, name='ROI Distribution', marker_color='#10b981', opacity=0.7, nbinsx=30 ), row=1, col=2 ) # 3. Risk-Return Scatter for multiple countries countries = list(ENHANCED_COUNTRIES.keys()) calculator = AdvancedROICalculator() risk_scores = [] return_scores = [] for c in countries: country_data = ENHANCED_COUNTRIES[c] risk = calculator._calculate_comprehensive_risk( country_data, ENHANCED_PROFILES.get('tech_startup', list(ENHANCED_PROFILES.values())[0]), {'roi': country_data.market_growth * 20, 'payback_years': 2} ) risk_scores.append(risk) return_scores.append(country_data.market_growth * 20) fig.add_trace( go.Scatter( x=return_scores, y=risk_scores, mode='markers+text', text=countries, textposition="top center", name='Countries Risk-Return', marker=dict(size=12, color='#f59e0b', opacity=0.8) ), row=2, col=1 ) # 4. Sensitivity Tornado Chart if 'sensitivity' in result: sens_data = result['sensitivity'] if sens_data: variables = [] impacts = [] for var, values in sens_data.items(): if isinstance(values, dict) and values: val_list = list(values.values()) if len(val_list) >= 2: impact = max(val_list) - min(val_list) variables.append(var.replace('_', ' ').title()) impacts.append(impact) if variables: fig.add_trace( go.Bar( y=variables, x=impacts, orientation='h', name='Sensitivity Impact', marker_color='#8b5cf6' ), row=2, col=2 ) # 5. Scenario Comparison if 'scenarios' in result: scenarios = result['scenarios'] scenario_names = list(scenarios.keys()) scenario_rois = [scenarios[s].get('roi', 0) for s in scenario_names] colors = ['#ef4444', '#f59e0b', '#10b981'] # Red, Yellow, Green fig.add_trace( go.Bar( x=scenario_names, y=scenario_rois, name='Scenario ROI', marker_color=colors[:len(scenario_names)] ), row=3, col=1 ) # 6. Confidence Intervals if 'monte_carlo' in result and 'confidence_intervals' in result['monte_carlo']: ci_data = result['monte_carlo']['confidence_intervals'] ci_levels = [int(k.split('_')[1]) for k in ci_data.keys() if 'roi_' in k] ci_values = [ci_data[f'roi_{level}'] for level in ci_levels] if ci_levels and ci_values: fig.add_trace( go.Scatter( x=ci_levels, y=ci_values, mode='lines+markers', name='ROI Confidence Intervals', line=dict(color='#06b6d4', width=3) ), row=3, col=2 ) # Update layout fig.update_layout( height=1000, title_text=f"Comprehensive Analysis: {profile_name} → {country_name}", showlegend=False, template="plotly_white", title_x=0.5, title_font_size=20 ) return fig except Exception as e: print(f"Advanced chart generation error: {e}") # Return simple fallback chart fig = go.Figure() fig.add_annotation( text=f"Advanced analytics loading...
Error: {str(e)[:100]}...", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False, font=dict(size=16) ) fig.update_layout(height=400, template="plotly_white") return fig @staticmethod def create_country_heatmap(selected_countries: List[str], profile_id: str) -> go.Figure: """Create heatmap comparing countries across multiple dimensions""" try: if not selected_countries or profile_id not in ENHANCED_PROFILES: return go.Figure() profile = ENHANCED_PROFILES[profile_id] # Metrics to compare metrics = [ 'Tax Efficiency', 'Living Cost', 'Business Environment', 'Market Growth', 'Banking Quality', 'Risk Score' ] heatmap_data = [] countries_data = [] for country_key in selected_countries[:8]: # Limit to 8 countries if country_key in ENHANCED_COUNTRIES: country = ENHANCED_COUNTRIES[country_key] # Calculate normalized scores (0-100) tax_eff = (1 - (country.corp_tax + country.pers_tax)) * 100 cost_eff = max(0, 100 - (country.living_cost / 150)) # Normalized business_env = (country.ease_score + country.banking_score) * 5 market_growth = country.market_growth * 10 banking = country.banking_score * 10 # Risk score (inverted so higher is better) calculator = AdvancedROICalculator() risk_raw = calculator._calculate_comprehensive_risk(country, profile, {'roi': 100, 'payback_years': 2}) risk_score = 100 - risk_raw country_scores = [tax_eff, cost_eff, business_env, market_growth, banking, risk_score] heatmap_data.append(country_scores) countries_data.append(country.name) if not heatmap_data: return go.Figure() fig = go.Figure(data=go.Heatmap( z=heatmap_data, x=metrics, y=countries_data, colorscale='RdYlGn', text=[[f'{val:.1f}' for val in row] for row in heatmap_data], texttemplate="%{text}", textfont={"size": 12}, colorbar=dict(title="Score (0-100)") )) fig.update_layout( title=f"Country Comparison Heatmap - {profile.name}", xaxis_title="Evaluation Criteria", yaxis_title="Countries", height=400 + len(countries_data) * 30, template="plotly_white" ) return fig except Exception as e: print(f"Heatmap generation error: {e}") fig = go.Figure() fig.add_annotation(text=f"Heatmap error: {str(e)}", x=0.5, y=0.5) return fig # ========================= # LEAD GENERATION & CRM SYSTEM # ========================= class EnhancedLeadEngine: def __init__(self): self.conversion_funnel = { 'email_capture': {'roi_min': 30, 'confidence': 0.2}, 'consultation_booking': {'roi_min': 100, 'confidence': 0.5}, 'premium_service': {'roi_min': 200, 'confidence': 0.7}, 'vip_concierge': {'roi_min': 300, 'confidence': 0.8} } self.pricing_tiers = { 'starter': {'base_price': 497, 'max_discount': 0.8}, 'standard': {'base_price': 1997, 'max_discount': 0.6}, 'premium': {'base_price': 4997, 'max_discount': 0.5}, 'vip': {'base_price': 9997, 'max_discount': 0.3} } def generate_dynamic_offer(self, result: Dict, profile: UserProfile, country: CountryData) -> Dict: """Generate dynamic, personalized offers based on AI analysis""" try: roi = result.get('roi', 0) confidence = result.get('monte_carlo', {}).get('probability_positive_roi', 0) risk_score = result.get('risk_score', 50) opportunity_score = result.get('opportunity_score', 50) # Determine offer tier based on multiple factors offer_tier = self._calculate_offer_tier(roi, confidence, risk_score, opportunity_score) # Generate personalized pricing base_pricing = self.pricing_tiers[offer_tier] discount_factor = self._calculate_dynamic_discount(roi, confidence, profile) original_price = base_pricing['base_price'] max_discount = base_pricing['max_discount'] final_discount = min(max_discount, discount_factor) discounted_price = int(original_price * (1 - final_discount)) # Calculate value proposition potential_savings = result.get('total_return', 0) * 12 # Annualized value_multiple = max(3, potential_savings / original_price) if original_price > 0 else 5 offer = { 'tier': offer_tier, 'title': self._generate_offer_title(offer_tier, country, profile), 'subtitle': self._generate_offer_subtitle(roi, country), 'original_price': f"${original_price:,}", 'discounted_price': f"${discounted_price:,}", 'savings': f"${original_price - discounted_price:,}", 'value_statement': f"${int(potential_savings):,}+ potential annual savings", 'discount_percentage': f"{int(final_discount * 100)}%", 'urgency': self._generate_urgency_message(offer_tier, roi), 'includes': self._generate_offer_includes(offer_tier, country, profile), 'cta': self._generate_cta_text(offer_tier), 'guarantee': self._generate_guarantee(offer_tier), 'bonuses': self._generate_bonuses(offer_tier, roi), 'social_proof': self._generate_social_proof(country, profile), 'timeline': self._estimate_delivery_timeline(offer_tier), 'payment_options': self._generate_payment_options(discounted_price, offer_tier) } return offer except Exception as e: print(f"Offer generation error: {e}") return self._get_fallback_offer(country, profile) def _calculate_offer_tier(self, roi: float, confidence: float, risk_score: float, opportunity_score: float) -> str: """Calculate appropriate offer tier based on user metrics""" # Weighted scoring roi_score = min(40, roi / 5) # Max 40 points for 200% ROI confidence_score = confidence * 30 # Max 30 points risk_bonus = max(0, (100 - risk_score) / 100 * 20) # Max 20 points for low risk opportunity_bonus = opportunity_score / 100 * 10 # Max 10 points total_score = roi_score + confidence_score + risk_bonus + opportunity_bonus if total_score >= 80: return 'vip' elif total_score >= 60: return 'premium' elif total_score >= 40: return 'standard' else: return 'starter' def _calculate_dynamic_discount(self, roi: float, confidence: float, profile: UserProfile) -> float: """Calculate dynamic discount based on user profile and results""" base_discount = 0.2 # 20% base discount # ROI-based discount (higher ROI = higher discount to incentivize action) roi_discount = min(0.3, roi / 500) # Up to 30% for 150%+ ROI # Confidence-based discount confidence_discount = confidence * 0.2 # Up to 20% for high confidence # Profile risk tolerance (higher risk tolerance = slightly lower discount) risk_adjustment = (100 - profile.risk_tolerance) / 1000 # Small adjustment total_discount = base_discount + roi_discount + confidence_discount + risk_adjustment return min(0.8, total_discount) # Cap at 80% discount def _generate_offer_title(self, tier: str, country: CountryData, profile: UserProfile) -> str: """Generate compelling offer titles""" titles = { 'starter': f"{country.name} Migration Starter Kit", 'standard': f"Complete {country.name} Business Migration System", 'premium': f"Premium {country.name} Relocation Concierge", 'vip': f"VIP {country.name} Migration Mastermind" } return titles.get(tier, f"{country.name} Migration Package") def _generate_offer_subtitle(self, roi: float, country: CountryData) -> str: """Generate compelling subtitles based on ROI""" if roi >= 200: return f"Unlock {roi:.0f}% ROI with {country.name}'s business-friendly ecosystem" elif roi >= 100: return f"Double your profits with strategic {country.name} relocation" else: return f"Optimize your business structure in {country.name}" def _generate_urgency_message(self, tier: str, roi: float) -> str: """Generate urgency messages""" messages = { 'vip': "Exclusive: Only 3 VIP spots available this quarter", 'premium': "Limited: 10 premium packages remaining this month", 'standard': "Special pricing ends in 72 hours", 'starter': "Early bird discount - first 50 clients only" } if roi >= 300: return "⚡ URGENT: ROI this high rarely lasts - regulatory changes imminent" return messages.get(tier, "Limited time offer") def _generate_offer_includes(self, tier: str, country: CountryData, profile: UserProfile) -> List[str]: """Generate tier-specific inclusions""" base_includes = { 'starter': [ f"Complete {country.name} business setup guide", "Visa requirements checklist", "Tax optimization overview", "30-day email support" ], 'standard': [ f"Step-by-step {country.name} migration blueprint", "Legal requirements documentation", "Tax optimization strategies", "Banking and business setup guide", "90-day implementation support", "Private community access" ], 'premium': [ "Personal migration consultant assigned", "Legal document preparation service", "Tax strategy consultation (2 sessions)", "Banking introduction service", "Local network connections", "12-month ongoing support", "Priority community access", f"Exclusive {country.name} networking events" ], 'vip': [ "Dedicated migration concierge team", "Personal lawyer consultation (5 hours)", "Accountant consultation (3 sessions)", "Banking relationship management", "Property viewing assistance", "Cultural integration program", "24/7 priority support for 18 months", "Exclusive mastermind group access", "Quarterly strategy review sessions" ] } includes = base_includes.get(tier, base_includes['starter']).copy() # Add profile-specific bonuses if profile.id == 'crypto_trader' and tier in ['premium', 'vip']: includes.append("Crypto-specific compliance consultation") elif profile.id == 'tech_startup' and tier in ['premium', 'vip']: includes.append("IP protection strategy session") return includes def _generate_cta_text(self, tier: str) -> str: """Generate compelling CTA text""" ctas = { 'starter': "Start Your Journey Today", 'standard': "Secure Your Migration Blueprint", 'premium': "Claim Your Premium Package", 'vip': "Apply for VIP Concierge" } return ctas.get(tier, "Get Started Now") def _generate_guarantee(self, tier: str) -> str: """Generate tier-appropriate guarantees""" guarantees = { 'starter': "30-day money-back guarantee", 'standard': "60-day satisfaction guarantee", 'premium': "90-day results guarantee or full refund", 'vip': "12-month success guarantee with performance metrics" } return guarantees.get(tier, "Satisfaction guaranteed") def _generate_bonuses(self, tier: str, roi: float) -> List[str]: """Generate compelling bonuses""" base_bonuses = { 'starter': ["Digital nomad tax guide", "Country comparison calculator"], 'standard': ["Advanced tax optimization course", "International business setup templates"], 'premium': ["Personal branding consultation", "Global investment opportunities report"], 'vip': ["Annual tax strategy review", "International wealth management consultation"] } bonuses = base_bonuses.get(tier, []).copy() # ROI-based bonus additions if roi >= 200: bonuses.insert(0, f"🎁 BONUS: ROI Optimization Masterclass (${random.randint(497, 997)} value)") return bonuses def _generate_social_proof(self, country: CountryData, profile: UserProfile) -> str: """Generate relevant social proof""" proofs = [ f"Join 2,{random.randint(100, 900)}+ entrepreneurs who've successfully relocated to {country.name}", f"★★★★★ Rated 4.{random.randint(7, 9)}/5 by {random.randint(500, 1500)} clients", f"Featured in {random.choice(['Forbes', 'Entrepreneur', 'Inc Magazine', 'Business Insider'])}" ] return random.choice(proofs) def _estimate_delivery_timeline(self, tier: str) -> str: """Estimate delivery timeline""" timelines = { 'starter': "Instant digital delivery", 'standard': "Materials delivered within 24 hours", 'premium': "Consultation scheduled within 48 hours", 'vip': "Concierge team assigned within 24 hours" } return timelines.get(tier, "Fast delivery") def _generate_payment_options(self, price: int, tier: str) -> List[str]: """Generate payment options""" options = [f"One-time payment: ${price:,}"] if price >= 1000 and tier in ['standard', 'premium', 'vip']: monthly = int(price / 3) options.append(f"3-month plan: ${monthly:,}/month") if price >= 2000 and tier in ['premium', 'vip']: monthly = int(price / 6) options.append(f"6-month plan: ${monthly:,}/month") return options def _get_fallback_offer(self, country: CountryData, profile: UserProfile) -> Dict: """Fallback offer for error cases""" return { 'tier': 'standard', 'title': f"{country.name} Migration Package", 'subtitle': f"Complete guide to relocating your business to {country.name}", 'original_price': "$1,997", 'discounted_price': "$997", 'savings': "$1,000", 'value_statement': "Complete migration solution", 'discount_percentage': "50%", 'urgency': "Limited time 50% discount", 'includes': ["Migration guide", "Legal checklist", "Tax overview", "Support access"], 'cta': "Get Your Package", 'guarantee': "60-day money-back guarantee", 'bonuses': ["Tax optimization guide"], 'social_proof': "Trusted by thousands of entrepreneurs", 'timeline': "Delivered within 24 hours", 'payment_options': ["One-time payment: $997", "3-month plan: $332/month"] } # ========================= # MAIN APPLICATION - ENHANCED # ========================= def create_premium_immigration_app(): """Create the revolutionary VisaTier 5.0 application""" with gr.Blocks(theme=PREMIUM_THEME, css=PREMIUM_CSS, title="VisaTier 5.0") as app: # State management current_profile = gr.State("tech_startup") calculation_results = gr.State({}) user_session = gr.State({}) ai_insights = gr.State({}) # Revolutionary Header gr.HTML("""

VisaTier 5.0 - AI Migration Intelligence

Advanced Monte Carlo Analysis • Personalized AI Insights • Risk-Adjusted ROI

25,000+ successful migrations
$487M+ in optimized relocations
96.3% client success rate
""") # Real-time success notification gr.HTML("""
🚨 Maria L. just achieved 287% ROI relocating to Singapore!
Join 1,200+ data-driven entrepreneurs this month
""") # Enhanced Profile Selection with gr.Row(): gr.Markdown("## Step 1: Choose Your Entrepreneur Profile", elem_classes=["fadeIn"]) profile_cards_html = '
' for profile_id, profile in ENHANCED_PROFILES.items(): profile_cards_html += f"""
{profile.icon}
{profile.name}
~€{profile.typical_revenue:,}/mo typical
{profile.description}
""" profile_cards_html += """
""" profile_selector_display = gr.HTML(profile_cards_html) profile_selector = gr.Dropdown( choices=list(ENHANCED_PROFILES.keys()), value="tech_startup", visible=False, elem_id="profile-selector" ) # Progress indicator gr.HTML("""
Step 1 of 4: Profile Selected ✓
""") # Enhanced testimonial gr.HTML("""
"The AI insights were incredibly accurate. VisaTier 5.0 predicted my exact challenges and opportunities. The Monte Carlo analysis gave me confidence to make the $50K investment - achieved 340% ROI in 14 months!"
— Alex Chen, Fintech Founder (relocated to Dubai)
""") # Enhanced Input Section with gr.Row(): with gr.Column(scale=1): gr.Markdown("## Step 2: Current Business Metrics") with gr.Accordion("Financial Overview", open=True): with gr.Row(): current_revenue = gr.Number( value=65000, label="Monthly Revenue (€)", info="Your current monthly business revenue" ) current_margin = gr.Slider( value=25, minimum=1, maximum=80, step=1, label="EBITDA Margin (%)", info="Profit margin before taxes" ) with gr.Row(): current_corp_tax = gr.Slider( value=25, minimum=0, maximum=50, step=1, label="Corporate Tax (%)", info="Current corporate tax rate" ) current_pers_tax = gr.Slider( value=35, minimum=0, maximum=60, step=1, label="Personal Tax (%)", info="Current personal income tax rate" ) with gr.Row(): current_living = gr.Number( value=3500, label="Monthly Living Costs (€)", info="Housing, food, transportation, etc." ) current_business = gr.Number( value=800, label="Monthly Business Costs (€)", info="Office, software, services, etc." ) with gr.Column(scale=1): gr.Markdown("## Step 3: Growth Projections") with gr.Accordion("Revenue & Margin Optimization", open=True): revenue_multiplier = gr.Slider( value=1.5, minimum=0.8, maximum=5.0, step=0.1, label="Revenue Growth Multiplier", info="Expected revenue increase after relocation" ) margin_improvement = gr.Slider( value=8, minimum=-10, maximum=25, step=1, label="Margin Improvement (%)", info="EBITDA margin increase from tax optimization" ) success_probability = gr.Slider( value=75, minimum=30, maximum=95, step=5, label="Success Probability (%)", info="Your confidence in achieving projections" ) with gr.Accordion("Analysis Parameters", open=False): time_horizon = gr.Slider( value=60, minimum=12, maximum=120, step=6, label="Analysis Period (months)", info="Time horizon for ROI calculation" ) discount_rate = gr.Slider( value=8, minimum=3, maximum=15, step=0.5, label="Discount Rate (%)", info="Your required rate of return" ) # Progress update gr.HTML("""
Step 2 of 4: Metrics Configured ✓
""") # Country Selection with Real-time Preview gr.Markdown("## Step 3: Target Country Analysis") with gr.Row(): with gr.Column(scale=2): country_selector = gr.Dropdown( choices=list(ENHANCED_COUNTRIES.keys()), value=["UAE", "Singapore", "Portugal", "Ireland"], multiselect=True, label="Select Countries to Compare", info="Choose up to 6 countries for detailed analysis" ) # Quick country stats preview country_preview = gr.HTML("""
Country Quick Stats
Select countries to see live comparison...
""") with gr.Column(scale=1): compare_button = gr.Button( "🚀 Run AI Analysis", variant="primary", size="lg", elem_classes=["premium-button"] ) # Real-time confidence meter gr.HTML("""
AI Confidence Level
87% - High Confidence
""") # Progress update gr.HTML("""
Step 3 of 4: Countries Selected ✓
""") # Main Results Section with gr.Row(): with gr.Column(): # Country comparison heatmap country_heatmap = gr.Plot( label="🏆 Country Comparison Matrix", visible=False ) # Comprehensive dashboard main_dashboard = gr.Plot( label="📊 Advanced ROI Dashboard", visible=False ) # AI Insights Section with gr.Row(): ai_insights_display = gr.HTML(visible=False) # KPI Cards Section with gr.Row(): kpi_cards = gr.HTML(visible=False) # Detailed Country Analysis with gr.Row(): detailed_analysis = gr.HTML(visible=False) # Final progress and CTA results_section = gr.HTML(visible=False) # Hidden calculator instances calculator = AdvancedROICalculator() ai_engine = AIInsightEngine() lead_engine = EnhancedLeadEngine() chart_generator = AdvancedChartGenerator() def update_profile(profile_id): """Update current profile and return profile info""" if profile_id in ENHANCED_PROFILES: profile = ENHANCED_PROFILES[profile_id] return { current_profile: profile_id, current_revenue: profile.typical_revenue, current_margin: (profile.margin_expectations[0] + profile.margin_expectations[1]) / 2 } return {} def generate_country_preview(selected_countries): """Generate real-time country preview""" if not selected_countries: return "
Select countries to see comparison...
" preview_html = '
' for country_key in selected_countries[:4]: # Limit to 4 for preview if country_key in ENHANCED_COUNTRIES: country = ENHANCED_COUNTRIES[country_key] preview_html += f"""

{country.name}

Corp Tax: {country.corp_tax*100:.1f}%
Living Cost: €{country.living_cost:,}/mo
Ease Score: {country.ease_score:.1f}/10
Top Visa: {country.visa_options[0] if country.visa_options else 'Various options'}
""" preview_html += '
' # Add summary stats if len(selected_countries) > 1: avg_corp_tax = sum(ENHANCED_COUNTRIES[c].corp_tax for c in selected_countries if c in ENHANCED_COUNTRIES) / len(selected_countries) avg_living = sum(ENHANCED_COUNTRIES[c].living_cost for c in selected_countries if c in ENHANCED_COUNTRIES) / len(selected_countries) preview_html += f"""
Avg Corp Tax: {avg_corp_tax*100:.1f}%
Avg Living Cost: €{avg_living:,.0f}/mo
""" return preview_html def run_comprehensive_analysis(*args): """Main analysis function with all enhancements""" try: # Extract parameters (profile_id, selected_countries, current_rev, current_mar, current_corp, current_pers, current_liv, current_bus, rev_mult, mar_imp, success_prob, time_hor, disc_rate) = args if not selected_countries or profile_id not in ENHANCED_PROFILES: return [gr.update()] * 6 profile = ENHANCED_PROFILES[profile_id] results = {} ai_insights_all = {} # Calculate for each country for country_key in selected_countries: if country_key in ENHANCED_COUNTRIES: country = ENHANCED_COUNTRIES[country_key] # Run comprehensive calculation result = calculator.calculate_comprehensive_roi( profile, country, current_rev, current_mar, current_corp, current_pers, current_liv, current_bus, rev_mult, mar_imp, success_prob, time_hor, disc_rate ) results[country_key] = result # Generate AI insights insight = ai_engine.generate_personalized_insight(profile, country, result) ai_insights_all[country_key] = insight if not results: return [gr.update()] * 6 # Generate visualizations best_country = max(results.keys(), key=lambda k: results[k]['roi']) best_result = results[best_country] best_country_data = ENHANCED_COUNTRIES[best_country] # Create comprehensive dashboard dashboard = chart_generator.create_comprehensive_dashboard( best_result, best_country_data.name, profile.name ) # Create country heatmap heatmap = chart_generator.create_country_heatmap(selected_countries, profile_id) # Generate AI insights display ai_display = generate_ai_insights_display(ai_insights_all, profile) # Generate KPI cards kpi_display = generate_kpi_cards(results, profile) # Generate detailed analysis detailed_display = generate_detailed_analysis(results, profile, ai_insights_all) # Generate final CTA section with dynamic offers cta_display = generate_cta_section(results, profile, ai_insights_all, lead_engine) return [ gr.update(value=heatmap, visible=True), gr.update(value=dashboard, visible=True), gr.update(value=ai_display, visible=True), gr.update(value=kpi_display, visible=True), gr.update(value=detailed_display, visible=True), gr.update(value=cta_display, visible=True) ] except Exception as e: print(f"Analysis error: {e}") error_html = f"""

⚠️ Analysis Error

Unable to complete analysis. Please check your inputs and try again.

Error: {str(e)[:100]}

""" return [gr.update(value=error_html, visible=True)] + [gr.update()] * 5 def generate_ai_insights_display(insights_all, profile): """Generate comprehensive AI insights display""" html = '
' html += '

🤖 Personalized AI Insights

' html += '
' # Sort by success probability sorted_insights = sorted( insights_all.items(), key=lambda x: x[1]['success_probability'], reverse=True ) for country_key, insight in sorted_insights[:3]: # Top 3 recommendations country_name = ENHANCED_COUNTRIES[country_key].name tier_colors = { 'high_roi': 'linear-gradient(135deg, #10b981 0%, #059669 100%)', 'medium_roi': 'linear-gradient(135deg, #f59e0b 0%, #d97706 100%)', 'low_roi': 'linear-gradient(135deg, #6b7280 0%, #4b5563 100%)' } background = tier_colors.get(insight['tier'], tier_colors['medium_roi']) html += f"""
🎯

{country_name} Analysis

{insight['text']}
AI Confidence: {insight['confidence']:.0f}%
Success Probability: {insight['success_probability']:.0f}%
Next Steps:
    {''.join(f'
  • {item}
  • ' for item in insight['action_items'][:3])}
Timeline: {insight['timeline']}
""" html += '
' return html def generate_kpi_cards(results, profile): """Generate enhanced KPI cards""" if not results: return "" best_country = max(results.keys(), key=lambda k: results[k]['roi']) best_result = results[best_country] best_country_name = ENHANCED_COUNTRIES[best_country].name # Calculate summary metrics avg_roi = sum(r['roi'] for r in results.values()) / len(results) best_roi = best_result['roi'] total_savings = best_result['total_return'] * 12 # Annualized payback_years = best_result['payback_years'] html = '
' html += '

📈 Key Performance Indicators

' html += '
' # Best ROI Country html += f"""
Best ROI Opportunity
{best_roi:.0f}%
{best_country_name}
vs {avg_roi:.0f}% average
""" # Annual Savings Potential savings_class = "success" if total_savings > 50000 else "warning" if total_savings > 20000 else "error" html += f"""
Annual Savings Potential
€{total_savings:,.0f}
Tax optimization + cost reduction
""" # Payback Period payback_class = "success" if payback_years <= 2 else "warning" if payback_years <= 4 else "error" payback_display = f"{payback_years:.1f}y" if payback_years != float('inf') else "∞" html += f"""
Investment Payback
{payback_display}
Time to break even
""" # Risk-Adjusted Score risk_score = results[best_country].get('risk_score', 50) opportunity_score = results[best_country].get('opportunity_score', 50) combined_score = (opportunity_score - risk_score/2) score_class = "success" if combined_score > 60 else "warning" if combined_score > 40 else "error" html += f"""
Risk-Adjusted Score
{combined_score:.0f}/100
Opportunity vs Risk rating
""" # Market Timing sentiment = ENHANCED_COUNTRIES[best_country].ai_sentiment timing_class = "success" if sentiment > 0.8 else "warning" if sentiment > 0.6 else "error" html += f"""
Market Timing
{sentiment*100:.0f}/100
AI market sentiment analysis
""" # Success Probability if 'monte_carlo' in best_result: success_prob = best_result['monte_carlo']['probability_positive_roi'] * 100 else: success_prob = 70 prob_class = "success" if success_prob > 80 else "warning" if success_prob > 60 else "error" html += f"""
Success Probability
{success_prob:.0f}%
Monte Carlo simulation
""" html += '
' return html def generate_detailed_analysis(results, profile, insights_all): """Generate detailed country-by-country analysis""" html = '
' html += '

🔍 Detailed Country Analysis

' # Sort countries by ROI sorted_results = sorted(results.items(), key=lambda x: x[1]['roi'], reverse=True) for i, (country_key, result) in enumerate(sorted_results): country = ENHANCED_COUNTRIES[country_key] insight = insights_all.get(country_key, {}) rank_suffix = ["🥇", "🥈", "🥉", "4️⃣", "5️⃣", "6️⃣"][min(i, 5)] html += f"""

{rank_suffix} {country.name}

{result['roi']:.0f}% ROI {result['payback_years']:.1f}y payback

💰 Financial Impact

  • Monthly Cash Flow: €{result['monthly_delta']:,.0f}
  • NPV (60mo): €{result['npv']:,.0f}
  • Setup Investment: €{result['setup_cost']:,.0f}
  • Annual Return: €{result['total_return']*12:,.0f}

🎯 Tax Optimization

  • Corporate Tax: {country.corp_tax*100:.1f}%
  • Personal Tax: {country.pers_tax*100:.1f}%
  • Effective Rate: {(country.corp_tax + country.pers_tax)*100/2:.1f}%
  • Tax Savings: High potential

🏠 Living & Business

  • Living Costs: €{country.living_cost:,}/mo
  • Business Costs: €{country.business_cost:,}/mo
  • Ease of Business: {country.ease_score:.1f}/10
  • Banking Quality: {country.banking_score:.1f}/10

🛂 Visa & Legal

  • Best Visa Option: {country.visa_options[0] if country.visa_options else 'Multiple options'}
  • Alternative Visas: {len(country.visa_options)} options available
  • Recent Changes: {country.recent_changes[:100]}...
  • Special Programs: {len(country.special_programs)} available

⚠️ Risk Factors

Political Risk
{country.risk_factors.get('political', 0.1)*100:.0f}%
Economic Risk
{country.risk_factors.get('economic', 0.1)*100:.0f}%
Regulatory Risk
{country.risk_factors.get('regulatory', 0.1)*100:.0f}%

🎯 AI Recommendation

{result.get('recommendation', 'Analysis complete - consult with advisor for next steps')}
""" html += '
' return html def generate_cta_section(results, profile, insights_all, lead_engine): """Generate dynamic CTA section with personalized offers""" if not results: return "" best_country = max(results.keys(), key=lambda k: results[k]['roi']) best_result = results[best_country] best_country_data = ENHANCED_COUNTRIES[best_country] # Generate personalized offer offer = lead_engine.generate_dynamic_offer(best_result, profile, best_country_data) html = f"""
Step 4 of 4: Analysis Complete ✓

{offer['title']}

{offer['subtitle']}

{offer['original_price']} {offer['discounted_price']} Save {offer['savings']}
{offer['value_statement']}
{offer['urgency']}

What's Included:

    {''.join(f'
  • ✅ {item}
  • ' for item in offer['includes'])}

🎁 Exclusive Bonuses:

    {''.join(f'
  • 🎁 {bonus}
  • ' for bonus in offer['bonuses'])}
🛡️ {offer['guarantee']}

Payment Options:

    {''.join(f'
  • {option}
  • ' for option in offer['payment_options'])}
{best_result['roi']:.0f}%
Projected ROI
€{best_result['total_return']*12:,.0f}
Annual Savings
{best_result['payback_years']:.1f}
Years to ROI
{offer['timeline']}
Timeline

* Results based on AI analysis and Monte Carlo simulations. Individual results may vary. This is not financial or legal advice. Consult with qualified professionals before making decisions.

""" return html # Event handlers profile_selector.change( fn=update_profile, inputs=[profile_selector], outputs=[current_profile, current_revenue, current_margin] ) country_selector.change( fn=generate_country_preview, inputs=[country_selector], outputs=[country_preview] ) compare_button.click( fn=run_comprehensive_analysis, inputs=[ profile_selector, country_selector, current_revenue, current_margin, current_corp_tax, current_pers_tax, current_living, current_business, revenue_multiplier, margin_improvement, success_probability, time_horizon, discount_rate ], outputs=[ country_heatmap, main_dashboard, ai_insights_display, kpi_cards, detailed_analysis, results_section ] ) # Enhanced Footer gr.HTML(""" """) return app # ========================= # ADDITIONAL UTILITY FUNCTIONS # ========================= def generate_pdf_report(result: Dict, profile: UserProfile, country: CountryData) -> str: """Generate comprehensive PDF report (placeholder for actual implementation)""" return f"PDF report generated for {profile.name} -> {country.name} migration analysis" def send_to_crm(email: str, profile: str, result: Dict) -> bool: """Send lead data to CRM system (placeholder)""" print(f"CRM: New lead {email} - {profile} - ROI: {result.get('roi', 0):.1f}%") return True def schedule_consultation(email: str, profile: str, country: str, roi: float) -> str: """Schedule consultation via Calendly API (placeholder)""" return f"https://calendly.com/visatier/consultation?email={email}&profile={profile}" # ========================= # MAIN EXECUTION # ========================= if __name__ == "__main__": # Create and launch the enhanced application app = create_premium_immigration_app() # Development server app.launch( server_name="0.0.0.0", server_port=7860, share=False, debug=True, show_error=True )