import gradio as gr import cv2 import numpy as np from ultralytics import YOLO # Load YOLO model model = YOLO('yolo11s-earth.pt') # Load your model # Default classes default_classes = [ 'airplane', 'airport', 'baseballfield', 'basketballcourt', 'bridge', 'chimney', 'dam', 'Expressway-Service-area', 'Expressway-toll-station', 'golffield', 'groundtrackfield', 'harbor', 'overpass', 'ship', 'stadium', 'storagetank', 'tenniscourt', 'trainstation', 'vehicle', 'windmill' ] def process_frame(frame, classes_input): # Process user input classes if classes_input and classes_input.strip(): classes_list = [cls.strip() for cls in classes_input.split(',')] # Validate classes_list for cls in classes_list: if not isinstance(cls, str): print("Invalid class name:", cls) continue model.set_classes(classes_list) # Set model classes else: # Use default classes if no input or input is empty model.set_classes(default_classes) # Copy frame to a writable array frame = frame.copy() # Resize image to speed up processing (optional) h, w = frame.shape[:2] new_size = (640, int(h * (640 / w))) if w > h else (int(w * (640 / h)), 640) resized_frame = cv2.resize(frame, new_size) # Convert image format rgb_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB) # Use model for detection results = model.predict(rgb_frame) # Draw detection results for result in results: boxes = result.boxes for box in boxes: x1, y1, x2, y2 = box.xyxy[0] conf = box.conf[0] cls = box.cls[0] try: class_name = model.names[int(cls)] except (IndexError, TypeError) as e: print(f"Error accessing model.names: {e}") class_name = "Unknown" # Provide a default value # Adjust coordinates to original image size x1 = int(x1 * w / new_size[0]) y1 = int(y1 * h / new_size[1]) x2 = int(x2 * w / new_size[0]) y2 = int(y2 * h / new_size[1]) # Draw bounding box and label cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f'{class_name}:{conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) return frame def main(): # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# YOLO11s-Earth open vocabulary detection (DIOR finetuning)") with gr.Row(): cam_input = gr.Image(type="numpy", sources=["webcam"], streaming=True, label="Webcam") classes_input = gr.Textbox(label="New classes (comma-separated)", placeholder="e.g.: airplane, airport, tennis court") output = gr.Image(label="Results", type="numpy", height=480) # Set height to 480 cam_input.stream( process_frame, inputs=[cam_input, classes_input], outputs=output ) # Launch Gradio app demo.launch() if __name__ == "__main__": main()