Chanyut73 commited on
Commit
70937e9
·
1 Parent(s): be6c682

Refactor app.py to load environment variables and use token for InferenceClient; add .gitignore for project dependencies and environment files

Browse files
Files changed (2) hide show
  1. .gitignore +32 -0
  2. app.py +20 -33
.gitignore ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python cache and environment
2
+ __pycache__/
3
+ *.py[cod]
4
+ *.so
5
+ *.egg
6
+ *.egg-info/
7
+ dist/
8
+ build/
9
+
10
+ # Virtual environment
11
+ env/
12
+ venv/
13
+ ENV/
14
+ .venv/
15
+
16
+ # VS Code
17
+ .vscode/
18
+
19
+ # macOS system files
20
+ .DS_Store
21
+
22
+ # Environment variables
23
+ .env
24
+
25
+ # Jupyter Notebook checkpoints (if any)
26
+ .ipynb_checkpoints/
27
+
28
+ # Gradio cache (optional)
29
+ gradio_cached_examples/
30
+
31
+ # Logs (optional)
32
+ *.log
app.py CHANGED
@@ -1,32 +1,30 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
 
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,30 +33,19 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from dotenv import load_dotenv
4
+ import os
5
 
6
+ # โหลดตัวแปรจาก .env
7
+ load_dotenv()
 
 
8
 
9
+ # ดึง token จาก environment variable
10
+ HF_TOKEN = os.getenv("HF_TOKEN")
11
 
12
+ # สร้าง InferenceClient ด้วย token
13
+ client = InferenceClient("iapp/chinda-qwen3-4b", token=HF_TOKEN)
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
+ # ฟังก์ชันสำหรับประมวลผลข้อความสนทนา
16
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
17
+ # เตรียมข้อความตาม ChatML format
18
+ messages = [{"role": "system", "content": system_message}]
19
+ for user_msg, bot_msg in history:
20
+ if user_msg:
21
+ messages.append({"role": "user", "content": user_msg})
22
+ if bot_msg:
23
+ messages.append({"role": "assistant", "content": bot_msg})
24
  messages.append({"role": "user", "content": message})
25
 
26
  response = ""
27
+ # เรียกใช้งานแบบ streaming
28
  for message in client.chat_completion(
29
  messages,
30
  max_tokens=max_tokens,
 
33
  top_p=top_p,
34
  ):
35
  token = message.choices[0].delta.content
 
36
  response += token
37
  yield response
38
 
39
+ # สร้าง UI ด้วย Gradio
 
 
 
40
  demo = gr.ChatInterface(
41
  respond,
42
  additional_inputs=[
43
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
44
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
45
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
46
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
47
  ],
48
  )
49
 
 
50
  if __name__ == "__main__":
51
  demo.launch()