Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,617 Bytes
66dfd85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
import math
# --- nag_app.pyから移植した機能 ---
# 翻訳ライブラリのインポート
from deep_translator import GoogleTranslator
from langdetect import detect
# NAG対応パイプラインのインポート
# 注: このコードを実行するには、nag_app.pyのHugging Face Spaceから
# `src`ディレクトリ(pipeline_flux_kontext_nag.pyとtransformer_flux.pyを含む)を
# このファイルと同じ階層に配置する必要があります。
from src.pipeline_flux_kontext_nag import NAGFluxKontextPipeline
from src.transformer_flux import NAGFluxTransformer2DModel
# --- ここまでが移植部分 ---
# エラー解決のためにdiffusersの内部マッピングをインポート
from diffusers.loaders.peft import _SET_ADAPTER_SCALE_FN_MAPPING
# 定数の設定
MAX_SEED = np.iinfo(np.int32).max
DEFAULT_NAG_NEGATIVE_PROMPT = "Low resolution, blurry, lack of details, big head"
OUTPUT_RESOLUTION = 1024
# --- nag_app.pyから移植したモデル読み込み処理 ---
# NAG対応のKontextモデルをロード
transformer = NAGFluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16,
)
pipe = NAGFluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
transformer=transformer,
torch_dtype=torch.bfloat16,
)
pipe = pipe.to("cuda")
# --- ここまでが移植部分 ---
# --- LoRAの読み込み処理 (5つ) ---
print("Loading LoRA weights...")
# LoRA名とアダプター名のマッピング
LORA_MAPPING = {
"Hyper-SD": "hyper",
"Relighting": "relight",
"LoRA 3": "lora_3",
"LoRA 4": "lora_4",
"LoRA 5": "lora_5",
}
# 1. Hyper-SD LoRA
pipe.load_lora_weights(
"ByteDance/Hyper-SD",
weight_name="Hyper-FLUX.1-dev-8steps-lora.safetensors",
adapter_name=LORA_MAPPING["Hyper-SD"]
)
# 2. Relighting LoRA
pipe.load_lora_weights(
"linoyts/relighting-kontext-dev-lora",
weight_name="relighting-kontext-dev-lora.safetensors",
adapter_name=LORA_MAPPING["Relighting"]
)
# 3. 追加のLoRA 3 (後で設定)
# ★ 注意: 以下のリポジトリ名とファイル名は仮のものです。後で正しいものに置き換えてください。
try:
pipe.load_lora_weights(
"author/repo_name_3", # 例: "cagliostrolab/animagine-xl-3.0"
weight_name="lora_file_3.safetensors", # 例: "animagine-xl-3.0.safetensors"
adapter_name=LORA_MAPPING["LoRA 3"]
)
except Exception as e:
print(f"Warning: Could not load {list(LORA_MAPPING.keys())[2]}. Please check repository and file names. Error:", e)
# 4. 追加のLoRA 4 (後で設定)
try:
pipe.load_lora_weights(
"author/repo_name_4",
weight_name="lora_file_4.safetensors",
adapter_name=LORA_MAPPING["LoRA 4"]
)
except Exception as e:
print(f"Warning: Could not load {list(LORA_MAPPING.keys())[3]}. Please check repository and file names. Error:", e)
# 5. 追加のLoRA 5 (後で設定)
try:
pipe.load_lora_weights(
"author/repo_name_5",
weight_name="lora_file_5.safetensors",
adapter_name=LORA_MAPPING["LoRA 5"]
)
except Exception as e:
print(f"Warning: Could not load {list(LORA_MAPPING.keys())[4]}. Please check repository and file names. Error:", e)
print("LoRA weights loading process finished.")
# --- ここまでが変更部分 ---
# カスタムモデルをdiffusersのLoRA対応表に登録する
_SET_ADAPTER_SCALE_FN_MAPPING[NAGFluxTransformer2DModel.__name__] = _SET_ADAPTER_SCALE_FN_MAPPING["FluxTransformer2DModel"]
print("Custom model 'NAGFluxTransformer2DModel' registered for LoRA.")
def round_to_multiple(number, multiple=8):
return multiple * round(number / multiple)
def concatenate_images(images, direction="horizontal"):
if not images: return None
valid_images = [img for img in images if img is not None]
if not valid_images: return None
if len(valid_images) == 1: return valid_images[0].convert("RGB")
valid_images = [img.convert("RGB") for img in valid_images]
if direction == "horizontal":
total_width = sum(img.width for img in valid_images)
max_height = max(img.height for img in valid_images)
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
x_offset = 0
for img in valid_images:
y_offset = (max_height - img.height) // 2
concatenated.paste(img, (x_offset, y_offset))
x_offset += img.width
else:
max_width = max(img.width for img in valid_images)
total_height = sum(img.height for img in valid_images)
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
y_offset = 0
for img in valid_images:
x_offset = (max_width - img.width) // 2
concatenated.paste(img, (x_offset, y_offset))
y_offset += img.height
return concatenated
@spaces.GPU(duration=25)
# ★ infer関数の引数に negative_prompt を追加
def infer(input_images, prompt, negative_prompt, seed, randomize_seed, guidance_scale, nag_negative_prompt, nag_scale, num_inference_steps,
# LoRAの有効/無効と強度を個別に受け取る
enable_lora1, weight_lora1,
enable_lora2, weight_lora2,
enable_lora3, weight_lora3,
enable_lora4, weight_lora4,
enable_lora5, weight_lora5,
progress=gr.Progress(track_tqdm=True)):
active_adapters = []
active_weights = []
lora_params = [
(enable_lora1, weight_lora1, "Hyper-SD"),
(enable_lora2, weight_lora2, "Relighting"),
(enable_lora3, weight_lora3, "LoRA 3"),
(enable_lora4, weight_lora4, "LoRA 4"),
(enable_lora5, weight_lora5, "LoRA 5"),
]
for is_enabled, weight, name in lora_params:
if is_enabled:
adapter_name = LORA_MAPPING[name]
active_adapters.append(adapter_name)
active_weights.append(weight)
print(f"Applying {name} LoRA with weight {weight}")
if active_adapters:
pipe.set_adapters(active_adapters, adapter_weights=active_weights)
else:
print("No LoRA selected. Running without LoRA.")
pipe.disable_lora()
prompt = prompt.strip()
if prompt:
print(f"Original prompt: {prompt}")
try:
detected_lang = detect(prompt)
if detected_lang != 'en':
print(f"Detected language: {detected_lang}. Translating to English...")
translated_prompt = GoogleTranslator(source=detected_lang, target='en').translate(prompt)
prompt = translated_prompt
print(f"Translated prompt: {prompt}")
else:
print("Prompt is already in English.")
except Exception as e:
print(f"Warning: Translation or language detection failed: {e}. Using original prompt.")
# ★ negative_promptを処理するコードを追加
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if input_images is None:
raise gr.Error("Please upload at least one image.")
if not isinstance(input_images, list):
input_images = [input_images]
valid_images = [img[0] for img in input_images if img is not None]
if not valid_images:
raise gr.Error("Please upload at least one valid image.")
if len(valid_images) == 1:
print("Single image detected. Calculating aspect-ratio aware dimensions.")
input_for_pipe = valid_images[0]
input_width, input_height = input_for_pipe.size
aspect_ratio = input_width / input_height
target_pixels = OUTPUT_RESOLUTION * OUTPUT_RESOLUTION
final_height = int(math.sqrt(target_pixels / aspect_ratio))
final_width = int(aspect_ratio * final_height)
final_width = round_to_multiple(final_width, 8)
final_height = round_to_multiple(final_height, 8)
print(f"Output dimensions set to: {final_width}x{final_height}")
else:
print(f"Multiple ({len(valid_images)}) images detected. Using fixed 1024x1024 output.")
input_for_pipe = concatenate_images(valid_images, "horizontal")
if input_for_pipe is None:
raise gr.Error("Failed to process the input images.")
final_width = OUTPUT_RESOLUTION
final_height = OUTPUT_RESOLUTION
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
# ★ pipe()呼び出しに negative_prompt を追加
image = pipe(
image=input_for_pipe,
prompt=final_prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
nag_negative_prompt=nag_negative_prompt,
nag_scale=nag_scale,
width=final_width,
height=final_height,
num_inference_steps=num_inference_steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
pipe.disable_lora()
return image, seed, gr.update(visible=True)
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
.lora-row {
align-items: center;
margin-bottom: 8px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext [dev] - Multi-Image with NAG
Compose a new image from multiple images using FLUX.1 Kontext, enhanced with Normalized Attention Guidance (NAG) and automatic prompt translation.
- **Single Image Input**: Output will match the input aspect ratio.
- **Multiple Image Inputs**: Output will be a fixed 1024x1024 resolution.
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(
label="Upload image(s) for editing",
show_label=True,
elem_id="gallery_input",
columns=3,
rows=2,
object_fit="contain",
height="auto",
file_types=['image'],
type='pil'
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (auto-translates to English)",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
# --- ★ UIを修正: 各LoRAコンポーネントを個別の変数として定義 ---
gr.Markdown("### LoRA Settings")
with gr.Row(elem_classes="lora-row"):
enable_lora1 = gr.Checkbox(label="Hyper-SD", value=True, scale=1)
weight_lora1 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.02, value=0.12, scale=3, visible=True)
with gr.Row(elem_classes="lora-row"):
enable_lora2 = gr.Checkbox(label="Relighting", value=False, scale=1)
weight_lora2 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=1.0, scale=3, visible=False)
with gr.Row(elem_classes="lora-row"):
enable_lora3 = gr.Checkbox(label="LoRA 3", value=False, scale=1)
weight_lora3 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.8, scale=3, visible=False)
with gr.Row(elem_classes="lora-row"):
enable_lora4 = gr.Checkbox(label="LoRA 4", value=False, scale=1)
weight_lora4 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.8, scale=3, visible=False)
with gr.Row(elem_classes="lora-row"):
enable_lora5 = gr.Checkbox(label="LoRA 5", value=False, scale=1)
weight_lora5 = gr.Slider(label="Weight", minimum=0.0, maximum=2.0, step=0.05, value=0.8, scale=3, visible=False)
# --- ★ ここまでが変更部分 ---
gr.Markdown("### Generation Settings")
# ★ UIに negative_prompt を追加
negative_prompt = gr.Text(
label="Negative Prompt (Standard)",
placeholder="Enter concepts to avoid (e.g., ugly, deformed)",
max_lines=2,
)
num_inference_steps = gr.Slider(
label="Inference Steps",
minimum=8,
maximum=50,
step=1,
value=8,
)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.25,
value=4.5,
)
nag_negative_prompt = gr.Text(
label="Negative Prompt for NAG",
value=DEFAULT_NAG_NEGATIVE_PROMPT,
max_lines=2,
placeholder="Enter concepts to avoid with NAG",
)
nag_scale = gr.Slider(
label="NAG Scale",
minimum=0.0,
maximum=20.0,
step=0.25,
value=3.5
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False, format="png")
reuse_button = gr.Button("Reuse this image", visible=False)
# ★ イベントハンドラを更新: all_inputsに negative_prompt を追加
all_inputs = [
input_images, prompt, negative_prompt, seed, randomize_seed, guidance_scale,
nag_negative_prompt, nag_scale, num_inference_steps,
enable_lora1, weight_lora1,
enable_lora2, weight_lora2,
enable_lora3, weight_lora3,
enable_lora4, weight_lora4,
enable_lora5, weight_lora5,
]
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = all_inputs,
outputs = [result, seed, reuse_button]
)
# --- ★ ここまでが変更部分 ---
reuse_button.click(
fn = lambda image: [image] if image is not None else [],
inputs = [result],
outputs = [input_images]
)
# --- ★ 各チェックボックスとスライダーの表示を個別に連動させる ---
def update_visibility(is_checked):
return gr.update(visible=is_checked)
enable_lora1.change(fn=update_visibility, inputs=enable_lora1, outputs=weight_lora1)
enable_lora2.change(fn=update_visibility, inputs=enable_lora2, outputs=weight_lora2)
enable_lora3.change(fn=update_visibility, inputs=enable_lora3, outputs=weight_lora3)
enable_lora4.change(fn=update_visibility, inputs=enable_lora4, outputs=weight_lora4)
enable_lora5.change(fn=update_visibility, inputs=enable_lora5, outputs=weight_lora5)
# --- ★ ここまでが変更部分 ---
demo.launch() |