Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import os | |
import spaces | |
import numpy as np | |
import torch | |
from PIL import Image | |
import huggingface_hub | |
import gradio as gr | |
from src.pipeline_flux_nag import NAGFluxPipeline | |
from src.transformer_flux import NAGFluxTransformer2DModel | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
transformer = NAGFluxTransformer2DModel.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
subfolder="transformer", | |
torch_dtype=torch.bfloat16, | |
) | |
pipe = NAGFluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
transformer=transformer, | |
torch_dtype=torch.bfloat16, | |
) | |
device = "cuda" | |
pipe = pipe.to(device) | |
examples = [ | |
["Portrait of AI researcher.", "Glasses.", 5], | |
["Portrait of AI researcher.", "Male.", 5], | |
["A baby phoenix made of fire and flames is born from the smoking ashes.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 5], | |
["A tiny astronaut hatching from an egg on the moon.", "Low resolution, blurry, lack of details, illustration, cartoon, painting.", 9] | |
] | |
def sample( | |
prompt, | |
negative_prompt=None, guidance_scale=3.5, | |
nag_negative_prompt=None, nag_scale=5.0, | |
width=1024, height=1024, | |
num_inference_steps=25, | |
seed=2025, randomize_seed=False, | |
compare=True, | |
): | |
prompt = prompt.strip() | |
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None | |
guidance_scale = float(guidance_scale) | |
width, height = int(width), int(height) | |
num_inference_steps = int(num_inference_steps) | |
if (randomize_seed): | |
seed = random.randint(0, MAX_SEED) | |
else: | |
seed = int(seed) | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image_nag = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
nag_negative_prompt=nag_negative_prompt, | |
nag_scale=nag_scale, | |
generator=generator, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
if compare: | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
image_normal = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
).images[0] | |
else: | |
image_normal = Image.new("RGB", image_nag.size, color=(0, 0, 0)) | |
return (image_normal, image_nag), seed | |
def sample_example( | |
prompt, | |
nag_negative_prompt, | |
nag_scale, | |
): | |
outputs, seed = sample( | |
prompt=prompt, | |
nag_negative_prompt=nag_negative_prompt, | |
nag_scale=nag_scale, | |
) | |
return outputs, 3.5, 1024, 1024, 25, seed, True | |
css = ''' | |
.gradio-container{ | |
max-width: 768px !important; | |
margin: 0 auto; | |
} | |
''' | |
with gr.Blocks(css=css, theme=theme) as demo: | |
gr.Markdown('''# Normalized Attention Guidance (NAG) Flux-Dev | |
Implementation of [Normalized Attention Guidance](https://chendaryen.github.io/NAG.github.io/) | |
''') | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
nag_negative_prompt = gr.Textbox( | |
label="Negative Prompt for NAG", | |
value="Low resolution, blurry, lack of details, illustration, cartoon, painting.", | |
max_lines=1, | |
) | |
nag_scale = gr.Slider(label="NAG Scale", minimum=1., maximum=20., step=0.25, value=5.) | |
compare = gr.Checkbox(label="Compare with baseline", info="If unchecked, only sample with NAG will be generated.", value=True) | |
button = gr.Button("Generate", min_width=120) | |
output = gr.ImageSlider(label="Left: Baseline, Right: With NAG", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", value=None, visible=False) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1., maximum=15., step=0.1, value=3.5) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25) | |
seed = gr.Slider(label="Seed", minimum=1, maximum=MAX_SEED, step=1, randomize=True) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
gr.Examples( | |
examples=examples, | |
fn=sample_example, | |
inputs=[ | |
prompt, | |
nag_negative_prompt, | |
nag_scale, | |
], | |
outputs=[output, guidance_scale, width, height, num_inference_steps, seed, compare], | |
cache_examples="lazy", | |
) | |
gr.on( | |
triggers=[ | |
button.click, | |
prompt.submit | |
], | |
fn=sample, | |
inputs=[ | |
prompt, | |
negative_prompt, guidance_scale, | |
nag_negative_prompt, nag_scale, | |
width, height, | |
num_inference_steps, | |
seed, randomize_seed, | |
compare, | |
], | |
outputs=[output, seed], | |
) | |
if __name__ == "__main__": | |
huggingface_hub.login(os.getenv('HF_TOKEN')) | |
demo.launch(share=True) | |