import math from typing import Optional import torch import torch.nn.functional as F from diffusers.models.attention_processor import Attention from diffusers.models.embeddings import apply_rotary_emb class NAGFluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__( self, nag_scale: float = 1.0, nag_tau=2.5, nag_alpha=0.25, encoder_hidden_states_length: int = None, ): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.nag_scale = nag_scale self.nag_tau = nag_tau self.nag_alpha = nag_alpha self.encoder_hidden_states_length = encoder_hidden_states_length def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape if self.nag_scale > 1.: if encoder_hidden_states is not None: assert len(hidden_states) == batch_size * 0.5 apply_guidance = True else: apply_guidance = False # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) # attention if apply_guidance and encoder_hidden_states is not None: query = query.tile(2, 1, 1) key = key.tile(2, 1, 1) value = value.tile(2, 1, 1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) encoder_hidden_states_length = encoder_hidden_states.shape[1] else: assert self.encoder_hidden_states_length is not None encoder_hidden_states_length = self.encoder_hidden_states_length if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if not apply_guidance: hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) else: origin_batch_size = batch_size // 2 query, query_negative = torch.chunk(query, 2, dim=0) key, key_negative = torch.chunk(key, 2, dim=0) value, value_negative = torch.chunk(value, 2, dim=0) hidden_states_negative = F.scaled_dot_product_attention(query_negative, key_negative, value_negative, dropout_p=0.0, is_causal=False) hidden_states_negative = hidden_states_negative.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim) hidden_states_negative = hidden_states_negative.to(query.dtype) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(origin_batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) if apply_guidance: encoder_hidden_states_negative, hidden_states_negative = ( hidden_states_negative[:, : encoder_hidden_states.shape[1]], hidden_states_negative[:, encoder_hidden_states.shape[1]:], ) hidden_states_positive = hidden_states hidden_states_guidance = hidden_states_positive * self.nag_scale - hidden_states_negative * (self.nag_scale - 1) norm_positive = torch.norm(hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape) norm_guidance = torch.norm(hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*hidden_states_positive.shape) scale = norm_guidance / norm_positive hidden_states_guidance = hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale hidden_states = hidden_states_guidance * self.nag_alpha + hidden_states_positive * (1 - self.nag_alpha) encoder_hidden_states = torch.cat((encoder_hidden_states, encoder_hidden_states_negative), dim=0) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: if apply_guidance: image_hidden_states_negative = hidden_states_negative[:, encoder_hidden_states_length:] image_hidden_states = hidden_states[:, encoder_hidden_states_length:] image_hidden_states_positive = image_hidden_states image_hidden_states_guidance = image_hidden_states_positive * self.nag_scale - image_hidden_states_negative * (self.nag_scale - 1) norm_positive = torch.norm(image_hidden_states_positive, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape) norm_guidance = torch.norm(image_hidden_states_guidance, p=2, dim=-1, keepdim=True).expand(*image_hidden_states_positive.shape) scale = norm_guidance / norm_positive image_hidden_states_guidance = image_hidden_states_guidance * torch.minimum(scale, scale.new_ones(1) * self.nag_tau) / scale # scale = torch.nan_to_num(scale, 10) # image_hidden_states_guidance[scale > self.nag_tau] = image_hidden_states_guidance[scale > self.nag_tau] / (norm_guidance[scale > self.nag_tau] + 1e-7) * norm_positive[scale > self.nag_tau] * self.nag_tau image_hidden_states = image_hidden_states_guidance * self.nag_alpha + image_hidden_states_positive * (1 - self.nag_alpha) hidden_states_negative[:, encoder_hidden_states_length:] = image_hidden_states hidden_states[:, encoder_hidden_states_length:] = image_hidden_states hidden_states = torch.cat((hidden_states, hidden_states_negative), dim=0) return hidden_states