import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer #model_name = "tiiuae/falcon-11b" model_name = "tiiuae/falcon-7b" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define the inference function def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs['input_ids'], max_length=50) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create the Gradio interface interface = gr.Interface(fn=generate_text, inputs="text", outputs="text") interface.launch()