Spaces:
Running
Running
File size: 26,892 Bytes
807e22d 40babd7 807e22d 40babd7 2bd9c51 40babd7 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 40babd7 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 807e22d 2bd9c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
import logging
import os
import uuid
import aiohttp
import json
import httpx
import io
import requests
from urllib.parse import quote
from typing import Annotated
from typing import TypedDict, List, Optional, Literal
from typing_extensions import TypedDict
from pydantic import BaseModel, Field
from trafilatura import extract
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
from langchain_core.messages import AIMessage, HumanMessage, AnyMessage, ToolCall, SystemMessage, ToolMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.tools import tool
from langchain_community.tools import TavilySearchResults
from langchain_huggingface import HuggingFacePipeline
from langgraph.graph.state import CompiledStateGraph
from langgraph.graph import StateGraph, START, END, add_messages
from langgraph.prebuilt import ToolNode
from langgraph.prebuilt import ToolNode, tools_condition
from langgraph.checkpoint.memory import MemorySaver
from langgraph.types import Command, interrupt
class State(TypedDict):
messages: Annotated[list, add_messages]
class DebugToolNode(ToolNode):
async def invoke(self, state, config=None):
print("π οΈ ToolNode activated")
print(f"Available tools: {[tool.name for tool in self.tool_map.values()]}")
print(f"Tool calls in last message: {state.messages[-1].tool_calls}")
return await super().invoke(state, config)
logger = logging.getLogger(__name__)
ASSISTANT_SYSTEM_PROMPT_BASE = """"""
search_enabled = bool(os.environ.get("TAVILY_API_KEY"))
try:
with open('brainstorming_system_prompt.txt', 'r') as file:
brainstorming_system_prompt = file.read()
except FileNotFoundError:
print("File 'system_prompt.txt' not found!")
except Exception as e:
print(f"Error reading file: {e}")
def evaluate_idea_completion(response) -> bool:
"""
Evaluates whether the assistant's response indicates a complete DIY project idea.
"""
required_keywords = ["materials", "dimensions", "tools", "steps"]
if isinstance(response, dict):
response_text = ' '.join(str(value).lower() for value in response.values())
elif isinstance(response, str):
response_text = response.lower()
else:
response_text = str(response).lower()
return all(keyword in response_text for keyword in required_keywords)
@tool
async def human_assistance(query: str) -> str:
"""Request assistance from a human."""
human_response = await interrupt({"query": query})
return human_response["data"]
@tool
async def download_website_text(url: str) -> str:
"""Download the text from a website"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
response.raise_for_status()
downloaded = await response.text()
result = extract(downloaded, include_formatting=True, include_links=True, output_format='json', with_metadata=True)
return result or "No text found on the website"
except Exception as e:
logger.error(f"Failed to download {url}: {str(e)}")
return f"Error retrieving website content: {str(e)}"
@tool
async def finalize_idea() -> str:
"""Marks the brainstorming phase as complete. This function does nothing else."""
return "Brainstorming finalized."
tools = [download_website_text, human_assistance, finalize_idea]
memory = MemorySaver()
if search_enabled:
tavily_search_tool = TavilySearchResults(
max_results=5,
search_depth="advanced",
include_answer=True,
include_raw_content=True,
)
tools.append(tavily_search_tool)
else:
print("TAVILY_API_KEY environment variable not found. Websearch disabled")
# Initialize Hugging Face models
print("Loading transformer models...")
# Option 1: Use Hugging Face Inference API (recommended for production)
def create_hf_inference_model(model_name="microsoft/DialoGPT-medium"):
"""Create a Hugging Face Inference API client"""
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
print("Warning: HF_TOKEN not found. Some features may not work.")
return None
return InferenceClient(
model=model_name,
token=hf_token,
)
# Option 2: Load local model (for offline use)
def create_local_model(model_name="microsoft/DialoGPT-small"):
"""Create a local transformer model"""
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading {model_name} on {device}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
)
# Add padding token if missing
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto" if device == "cuda" else None,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
pad_token_id=tokenizer.eos_token_id,
)
return HuggingFacePipeline(pipeline=text_generator)
except Exception as e:
print(f"Error loading local model: {e}")
return None
# Option 3: Use Llama via Hugging Face (requires more resources)
def create_llama_model():
"""Create Llama model - requires significant GPU memory"""
try:
model_name = "meta-llama/Llama-2-7b-chat-hf" # or "meta-llama/Llama-3.2-3B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True, # Use 8-bit quantization to save memory
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
text_generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
torch_dtype=torch.float16,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
)
return HuggingFacePipeline(pipeline=text_generator)
except Exception as e:
print(f"Error loading Llama model: {e}")
return None
# Choose which model to use
MODEL_TYPE = os.environ.get("MODEL_TYPE", "local") # Options: "inference", "local", "llama"
if MODEL_TYPE == "inference":
# Use Hugging Face Inference API
hf_client = create_hf_inference_model("microsoft/DialoGPT-medium")
model = hf_client
elif MODEL_TYPE == "llama":
# Use local Llama model
model = create_llama_model()
elif MODEL_TYPE == "local":
# Use local lightweight model
model = create_local_model("microsoft/DialoGPT-small")
else:
print("Invalid MODEL_TYPE. Using local model as fallback.")
model = create_local_model("microsoft/DialoGPT-small")
# Fallback to a simple model if primary model fails
if model is None:
print("Primary model failed to load. Using fallback model...")
model = create_local_model("distilgpt2")
# Set all model references to use the same transformer model
weak_model = model
assistant_model = model
prompt_planning_model = model
threed_object_gen_model = model
print(f"Using model type: {MODEL_TYPE}")
print(f"Model loaded successfully: {model is not None}")
# Custom function to generate responses with transformer models
async def generate_with_transformer(prompt_text, messages, max_length=512):
"""Generate response using transformer model"""
try:
# Combine messages into a single prompt
conversation = ""
for msg in messages:
if isinstance(msg, HumanMessage):
conversation += f"Human: {msg.content}\n"
elif isinstance(msg, AIMessage):
if isinstance(msg.content, str):
conversation += f"Assistant: {msg.content}\n"
elif isinstance(msg.content, list):
content = " ".join([item.get("text", "") for item in msg.content if isinstance(item, dict)])
conversation += f"Assistant: {content}\n"
elif isinstance(msg, SystemMessage):
conversation += f"System: {msg.content}\n"
# Add the current prompt
full_prompt = f"{prompt_text}\n\nConversation:\n{conversation}\nAssistant:"
if MODEL_TYPE == "inference" and hf_client:
# Use Hugging Face Inference API
response = await hf_client.text_generation(
full_prompt,
max_new_tokens=max_length,
temperature=0.7,
do_sample=True,
stop_sequences=["Human:", "System:"]
)
return response
else:
# Use local model
if hasattr(model, 'invoke'):
response = model.invoke(full_prompt)
return response
elif hasattr(model, '__call__'):
response = model(full_prompt)
if isinstance(response, list) and len(response) > 0:
return response[0].get('generated_text', '').replace(full_prompt, '').strip()
return str(response)
else:
return "Model not properly configured"
except Exception as e:
logger.error(f"Error generating with transformer: {e}")
return f"Error generating response: {e}"
# Custom tool calling simulation for transformer models
def simulate_tool_calls(response_text):
"""Simulate tool calls by parsing response text for specific patterns"""
tool_calls = []
# Look for patterns like "CALL_TOOL: human_assistance(query='...')"
if "human_assistance" in response_text.lower():
# Extract query from response
import re
pattern = r"human_assistance.*?[\(\"']([^\"']+)[\)\"']"
match = re.search(pattern, response_text, re.IGNORECASE)
if match:
query = match.group(1)
tool_calls.append({
"name": "human_assistance",
"arguments": {"query": query},
"id": f"call_{uuid.uuid4()}"
})
if "finalize_idea" in response_text.lower() or "idea finalized" in response_text.lower():
tool_calls.append({
"name": "finalize_idea",
"arguments": {"idea_name": "Generated Idea"},
"id": f"call_{uuid.uuid4()}"
})
return tool_calls
class GraphProcessingState(BaseModel):
messages: Annotated[list[AnyMessage], add_messages] = Field(default_factory=list)
prompt: str = Field(default_factory=str, description="The prompt to be used for the model")
tools_enabled: dict = Field(default_factory=dict, description="The tools enabled for the assistant")
search_enabled: bool = Field(default=True, description="Whether to enable search tools")
next_stage: str = Field(default="", description="The next stage to execute, decided by the guidance node.")
tool_call_required: bool = Field(default=False, description="Whether a tool should be called from brainstorming.")
loop_brainstorming: bool = Field(default=False, description="Whether to loop back to brainstorming for further iteration.")
# Completion flags for each stage
idea_complete: bool = Field(default=False)
brainstorming_complete: bool = Field(default=False)
planning_complete: bool = Field(default=False)
drawing_complete: bool = Field(default=False)
product_searching_complete: bool = Field(default=False)
purchasing_complete: bool = Field(default=False)
generated_image_url_from_dalle: str = Field(default="", description="The generated_image_url_from_dalle.")
async def guidance_node(state: GraphProcessingState, config=None):
print("\nπ΅οΈββοΈπ΅οΈββοΈ | start | progress checking node \n")
if state.messages:
last_message = state.messages[-1]
if isinstance(last_message, HumanMessage):
print(f"π§ Human: {last_message.content}\n")
elif isinstance(last_message, AIMessage):
if last_message.content:
if isinstance(last_message.content, list):
texts = [item.get('text', '') for item in last_message.content if isinstance(item, dict) and 'text' in item]
if texts:
print(f"π€ AI: {' '.join(texts)}\n")
elif isinstance(last_message.content, str):
print(f"π€ AI: {last_message.content}\n")
elif isinstance(last_message, SystemMessage):
print(f"βοΈ System: {last_message.content}\n")
elif isinstance(last_message, ToolMessage):
print(f"π οΈ Tool: {last_message.content}\n")
else:
print("\n(No messages found.)")
# Define the order of stages
stage_order = ["brainstorming", "planning", "drawing", "product_searching", "purchasing"]
# Identify completed and incomplete stages
completed = [stage for stage in stage_order if getattr(state, f"{stage}_complete", False)]
incomplete = [stage for stage in stage_order if not getattr(state, f"{stage}_complete", False)]
# Determine the next stage
if not incomplete:
return {
"messages": [AIMessage(content="All DIY project stages are complete!")],
"next_stage": "end_project",
"pending_approval_stage": None,
}
else:
next_stage = incomplete[0]
print(f"Next Stage: {next_stage}")
print("\nπ΅οΈββοΈπ΅οΈββοΈ | end | progress checking node \n")
return {
"messages": [],
"next_stage": next_stage,
"pending_approval_stage": None,
}
def guidance_routing(state: GraphProcessingState) -> str:
print("\nππ Routing checkpoint ππ\n")
print(f"Next Stage: {state.next_stage}\n")
print(f"Brainstorming complete: {state.brainstorming_complete}")
print(f"Planning complete: {state.planning_complete}")
print(f"Drawing complete: {state.drawing_complete}")
print(f"Product searching complete: {state.product_searching_complete}\n")
next_stage = state.next_stage
if next_stage == "brainstorming":
return "brainstorming_node"
elif next_stage == "planning":
return "prompt_planning_node"
elif next_stage == "drawing":
return "generate_3d_node"
elif next_stage == "product_searching":
print('\n Product searching stage reached')
return END
else:
return END
async def brainstorming_node(state: GraphProcessingState, config=None):
print("\nπ§ π§ | start | brainstorming Node \n")
if not model:
return {"messages": [AIMessage(content="Model not available for brainstorming.")]}
filtered_messages = [
message for message in state.messages
if isinstance(message, (HumanMessage, AIMessage, SystemMessage, ToolMessage)) and message.content
]
if not filtered_messages:
filtered_messages.append(AIMessage(content="No valid messages provided."))
stage_order = ["brainstorming", "planning", "drawing", "product_searching", "purchasing"]
completed = [stage for stage in stage_order if getattr(state, f"{stage}_complete", False)]
incomplete = [stage for stage in stage_order if not getattr(state, f"{stage}_complete", False)]
if not incomplete:
print("All stages complete!")
ai_all_complete_msg = AIMessage(content="All DIY project stages are complete!")
return {
"messages": [ai_all_complete_msg],
"next_stage": "end_project",
"pending_approval_stage": None,
}
guidance_prompt_text = """
You are a warm, encouraging, and knowledgeable AI assistant, acting as a Creative DIY Collaborator. Your primary goal is to guide the user through a friendly and inspiring conversation to finalize ONE specific, viable DIY project idea.
Your Conversational Style & Strategy:
1. Be an Active Listener: Start by acknowledging and validating the user's input.
2. Ask Inspiring, Open-Ended Questions: Make them feel personal and insightful.
3. Act as a Knowledgeable Guide: When a user is unsure, proactively suggest appealing ideas.
4. Guide, Don't Just Gatekeep: When an idea almost meets criteria, guide it towards feasibility.
Critical Criteria for the Final DIY Project Idea:
1. Buildable: Achievable by an average person with basic DIY skills.
2. Common Materials/Tools: Uses only materials and basic tools commonly available.
3. Avoid Specializations: No specialized electronics, 3D printing, or complex machinery.
4. Tangible Product: The final result must be a physical, tangible item.
If you need to ask the user a question, respond with: "CALL_TOOL: human_assistance(query='your question here')"
If an idea is finalized, respond with: "IDEA FINALIZED: [Name of the Idea]"
"""
if state.prompt:
final_prompt = "\n".join([guidance_prompt_text, state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
else:
final_prompt = "\n".join([guidance_prompt_text, ASSISTANT_SYSTEM_PROMPT_BASE])
try:
# Generate response using transformer model
response_text = await generate_with_transformer(final_prompt, filtered_messages)
# Simulate tool calls
tool_calls = simulate_tool_calls(response_text)
# Create AI message
ai_message = AIMessage(content=response_text)
updates = {
"messages": [ai_message],
"tool_calls": tool_calls,
}
print(f'\nπ response from brainstorm: {response_text}')
# Check for finalization
if "IDEA FINALIZED:" in response_text.upper():
print('β
final idea')
updates.update({
"brainstorming_complete": True,
"tool_call_required": False,
"loop_brainstorming": False,
})
elif tool_calls:
print('π οΈ tool call requested at brainstorming node')
updates.update({
"tool_call_required": True,
"loop_brainstorming": False,
})
else:
print('π¬ decided to keep brainstorming')
updates.update({
"tool_call_required": False,
"loop_brainstorming": True,
})
print("\nπ§ π§ | end | brainstorming Node \n")
return updates
except Exception as e:
print(f"Error: {e}")
return {
"messages": [AIMessage(content="Error in brainstorming.")],
"next_stage": "brainstorming"
}
async def prompt_planning_node(state: GraphProcessingState, config=None):
print("\nπ©π© | start | prompt planning Node \n")
if not model:
return {"messages": [AIMessage(content="Model not available for planning.")]}
filtered_messages = state.messages
if not filtered_messages:
filtered_messages.append(AIMessage(content="No valid messages provided."))
guidance_prompt_text = """
You are a creative AI assistant acting as a DIY Project Brainstorming & 3D-Prompt Generator. Your mission is to:
1. Brainstorm and refine one specific, viable DIY project idea.
2. Identify the single key component from that idea that should be 3D-modeled.
3. Produce a final, precise text prompt for a 3D-generation endpoint.
Critical Criteria for the DIY Project:
β’ Buildable by an average person with only basic DIY skills.
β’ Uses common materials/tools (e.g., wood, screws, glue, paint; hammer, saw, drill).
β’ No specialized electronics, 3D printers, or proprietary parts.
β’ Results in a tangible, physical item.
When the DIY idea is fully detailed and meets all criteria, output exactly:
ACCURATE PROMPT FOR MODEL GENERATING: [Your final single-paragraph prompt here]
"""
if state.prompt:
final_prompt = "\n".join([guidance_prompt_text, state.prompt, ASSISTANT_SYSTEM_PROMPT_BASE])
else:
final_prompt = "\n".join([guidance_prompt_text, ASSISTANT_SYSTEM_PROMPT_BASE])
try:
# Generate response using transformer model
response_text = await generate_with_transformer(final_prompt, filtered_messages)
# Create AI message
response = AIMessage(content=response_text)
updates = {"messages": [response]}
print(f'\nResponse: {response_text}')
# Check for finalization signal
if "ACCURATE PROMPT FOR MODEL GENERATING" in response_text:
dalle_prompt_text = response_text.replace("ACCURATE PROMPT FOR MODEL GENERATING:", "").strip()
print(f"\nπ€π€π€π€Extracted prompt: {dalle_prompt_text}")
# For this example, we'll simulate image generation
# In practice, you would call your image generation API here
generated_image_url = "https://example.com/generated_image.jpg" # Placeholder
updates["messages"].append(AIMessage(content=f"Image generation prompt created: {dalle_prompt_text}"))
updates.update({
"generated_image_url_from_dalle": generated_image_url,
"planning_complete": True,
"tool_call_required": False,
"loop_planning": False,
})
else:
# Check if a tool call was requested
tool_calls = simulate_tool_calls(response_text)
if tool_calls:
updates.update({
"tool_call_required": True,
"loop_planning": False,
})
else:
updates.update({
"tool_call_required": False,
"loop_planning": True,
})
print("\nπ©π© | end | prompt planning Node \n")
return updates
except Exception as e:
print(f"Error in prompt_planning node: {e}")
return {
"messages": [AIMessage(content="Error in prompt_planning node.")],
"next_stage": state.next_stage or "planning"
}
async def generate_3d_node(state: GraphProcessingState, config=None):
print("\nπππ | start | Generate 3D Node πππ\n")
# Get the image URL
hardcoded_image_url = state.generated_image_url_from_dalle
print(f"Using image_url: {hardcoded_image_url}")
# For this example, we'll simulate 3D generation
# In practice, you would call your 3D generation API here
try:
# Simulate 3D model generation
print("Simulating 3D model generation...")
# Create output directory
output_dir = "generated_3d_models"
os.makedirs(output_dir, exist_ok=True)
# Simulate successful generation
file_name = f"model_{uuid.uuid4()}.glb"
file_path = os.path.join(output_dir, file_name)
# Create a placeholder file
with open(file_path, "w") as f:
f.write("# Simulated 3D model file\n")
print(f"Success: 3D model saved to {file_path}")
return {
"messages": [AIMessage(content=f"3D object generation successful: {file_path}")],
"drawing_complete": True,
"three_d_model_path": file_path,
"next_stage": state.get("next_stage") or 'end'
}
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(error_message)
return {"messages": [AIMessage(content=f"Failed to generate 3D object: {error_message}")]}
def define_workflow() -> CompiledStateGraph:
"""Defines the workflow graph"""
workflow = StateGraph(GraphProcessingState)
# Add nodes
workflow.add_node("tools", DebugToolNode(tools))
workflow.add_node("guidance_node", guidance_node)
workflow.add_node("brainstorming_node", brainstorming_node)
workflow.add_node("prompt_planning_node", prompt_planning_node)
workflow.add_node("generate_3d_node", generate_3d_node)
# Edges
workflow.add_conditional_edges(
"guidance_node",
guidance_routing,
{
"brainstorming_node": "brainstorming_node",
"prompt_planning_node": "prompt_planning_node",
"generate_3d_node": "generate_3d_node"
}
)
workflow.add_conditional_edges("brainstorming_node", tools_condition)
workflow.add_conditional_edges("prompt_planning_node", tools_condition)
workflow.add_edge("tools", "guidance_node")
workflow.add_edge("brainstorming_node", "guidance_node")
workflow.add_edge("prompt_planning_node", "guidance_node")
workflow.add_edge("generate_3d_node", "guidance_node")
workflow.set_entry_point("guidance_node")
compiled_graph = workflow.compile(checkpointer=memory)
try:
img_bytes = compiled_graph.get_graph().draw_mermaid_png()
with open("graph.png", "wb") as f:
f.write(img_bytes)
print("Graph image saved as graph.png")
except Exception as e:
print("Can't print the graph:")
print(e)
return compiled_graph
graph = define_workflow()
# Example usage function
async def run_diy_assistant(user_input: str):
"""Run the DIY assistant with user input"""
config = {"configurable": {"thread_id": "1"}}
initial_state = GraphProcessingState(
messages=[HumanMessage(content=user_input)],
prompt="",
tools_enabled={"download_website_text": True, "tavily_search_results_json": search_enabled},
search_enabled=search_enabled
)
try:
result = await graph.ainvoke(initial_state, config)
return result
except Exception as e:
print(f"Error running DIY assistant: {e}")
return {"error": str(e)}
# Example of how to run
if __name__ == "__main__":
import asyncio
async def main():
user_input = "I want to build something for my garden"
result = await run_diy_assistant(user_input)
print("Final result:", result)
# asyncio.run(main())
print("DIY Assistant with transformer models loaded successfully!")
print(f"Available model: {model}")
print("Use the graph object to run your workflow.") |