DIY_assistant / app.py
Chris4K's picture
Update app.py
7f9b308 verified
import os
import logging
import logging.config
from typing import Any
from uuid import uuid4, UUID
import json
import sys
import gradio as gr
from dotenv import load_dotenv
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage, ToolMessage
from langgraph.types import RunnableConfig
from pydantic import BaseModel
from pathlib import Path
load_dotenv()
# Check Gradio version and provide guidance
print(f"Gradio version: {gr.__version__}")
# Parse version to check compatibility
try:
version_parts = gr.__version__.split('.')
major_version = int(version_parts[0])
minor_version = int(version_parts[1]) if len(version_parts) > 1 else 0
if major_version < 4:
print("⚠️ WARNING: You're using an older version of Gradio.")
print(" Some features may be limited. Consider upgrading:")
print(" pip install --upgrade gradio>=4.0.0")
elif major_version >= 4:
print("✅ Gradio version is compatible with all features.")
except (ValueError, IndexError):
print("Could not parse Gradio version.")
print() # Add spacing
# There are tools set here dependent on environment variables
from graph import graph, weak_model, search_enabled # noqa
FOLLOWUP_QUESTION_NUMBER = 3
TRIM_MESSAGE_LENGTH = 16 # Includes tool messages
USER_INPUT_MAX_LENGTH = 10000 # Characters
# We need the same secret for data persistance
# If you store sensitive data, you should store your secret in .env
BROWSER_STORAGE_SECRET = "itsnosecret"
try:
with open('logging-config.json', 'r') as fh:
config = json.load(fh)
logging.config.dictConfig(config)
except FileNotFoundError:
# Fallback logging configuration
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def load_initial_greeting(filepath="greeting_prompt.txt") -> str:
"""
Loads the initial greeting message from a specified text file.
"""
try:
with open(filepath, "r", encoding="utf-8") as f:
return f.read().strip()
except FileNotFoundError:
logger.warning(f"Warning: Prompt file '{filepath}' not found.")
return "Welcome to DIYO! I'm here to help you create amazing DIY projects. What would you like to build today?"
async def chat_fn(user_input: str, history: list, input_graph_state: dict, uuid: UUID, prompt: str, search_enabled: bool, download_website_text_enabled: bool):
"""
Chat function that works with tuples format for maximum compatibility
Args:
user_input (str): The user's input message
history (list): The history of the conversation in tuples format [(user_msg, bot_msg), ...]
input_graph_state (dict): The current state of the graph
uuid (UUID): The unique identifier for the current conversation
prompt (str): The system prompt
Yields:
list: Updated history in tuples format
dict: The final state of the graph
bool: Whether to trigger follow up questions
"""
try:
logger.info(f"Processing user input: {user_input[:100]}...")
logger.info(f"History format: {type(history)}, length: {len(history) if history else 0}")
# Initialize input_graph_state if None
if input_graph_state is None:
input_graph_state = {}
input_graph_state["tools_enabled"] = {
"download_website_text": download_website_text_enabled,
"tavily_search_results_json": search_enabled,
}
if prompt:
input_graph_state["prompt"] = prompt
# Convert tuples history to internal messages format for graph processing
if not isinstance(history, list):
history = []
# Convert history to messages format for graph processing
internal_messages = convert_from_tuples_format(history)
logger.info(f"Converted {len(history)} tuples to {len(internal_messages)} internal messages")
if input_graph_state.get("awaiting_human_input"):
internal_messages.append(
ToolMessage(
tool_call_id=input_graph_state.pop("human_assistance_tool_id"),
content=user_input
)
)
input_graph_state["awaiting_human_input"] = False
else:
# New user message
internal_messages.append(
HumanMessage(user_input[:USER_INPUT_MAX_LENGTH])
)
# Store internal messages in graph state
input_graph_state["messages"] = internal_messages[-TRIM_MESSAGE_LENGTH:]
config = RunnableConfig(
recursion_limit=20,
run_name="user_chat",
configurable={"thread_id": str(uuid)}
)
output: str = ""
final_state: dict = input_graph_state.copy() # Initialize with current state
waiting_output_seq: list[str] = []
# Add user message to history immediately
updated_history = history + [(user_input, "")]
logger.info(f"Updated history length: {len(updated_history)}")
async for stream_mode, chunk in graph.astream(
input_graph_state,
config=config,
stream_mode=["values", "messages"],
):
if stream_mode == "values":
final_state = chunk
if chunk.get("messages") and len(chunk["messages"]) > 0:
last_message = chunk["messages"][-1]
if hasattr(last_message, "tool_calls") and last_message.tool_calls:
for msg_tool_call in last_message.tool_calls:
tool_name: str = msg_tool_call['name']
if tool_name == "tavily_search_results_json":
query = msg_tool_call['args']['query']
waiting_output_seq.append(f"🔍 Searching for '{query}'...")
# Update the last tuple with current status
if updated_history:
updated_history[-1] = (user_input, "\n".join(waiting_output_seq))
yield updated_history, final_state, False
elif tool_name == "download_website_text":
url = msg_tool_call['args']['url']
waiting_output_seq.append(f"📥 Downloading text from '{url}'...")
if updated_history:
updated_history[-1] = (user_input, "\n".join(waiting_output_seq))
yield updated_history, final_state, False
elif tool_name == "human_assistance":
query = msg_tool_call["args"]["query"]
waiting_output_seq.append(f"🤖: {query}")
# Save state to resume after user provides input
final_state["awaiting_human_input"] = True
final_state["human_assistance_tool_id"] = msg_tool_call["id"]
# Update history and indicate that human input is needed
if updated_history:
updated_history[-1] = (user_input, "\n".join(waiting_output_seq))
yield updated_history, final_state, True
return # Pause execution, resume in next call
else:
waiting_output_seq.append(f"🔧 Running {tool_name}...")
if updated_history:
updated_history[-1] = (user_input, "\n".join(waiting_output_seq))
yield updated_history, final_state, False
elif stream_mode == "messages":
msg, metadata = chunk
# Check for the correct node name from your graph
node_name = metadata.get('langgraph_node', '')
if node_name in ["brainstorming_node", "prompt_planning_node", "generate_3d_node", "assistant_node"]:
current_chunk_text = ""
if isinstance(msg.content, str):
current_chunk_text = msg.content
elif isinstance(msg.content, list):
for block in msg.content:
if isinstance(block, dict) and block.get("type") == "text":
current_chunk_text += block.get("text", "")
elif isinstance(block, str):
current_chunk_text += block
if current_chunk_text:
output += current_chunk_text
# Update the last tuple with accumulated output
if updated_history:
updated_history[-1] = (user_input, output)
yield updated_history, final_state, False
# Final yield with complete response
if updated_history:
updated_history[-1] = (user_input, output.strip() if output else "I'm here to help with your DIY projects!")
logger.info(f"Final response: {output[:100]}...")
yield updated_history, final_state, True
except Exception as e:
logger.exception("Exception occurred in chat_fn")
error_message = "There was an error processing your request. Please try again."
if not isinstance(history, list):
history = []
error_history = history + [(user_input, error_message)]
# Return safe values instead of gr.skip()
yield error_history, input_graph_state or {}, False
def convert_to_tuples_format(messages_list):
"""Convert messages format to tuples format for older Gradio versions"""
if not isinstance(messages_list, list):
logger.warning(f"Expected list for messages conversion, got {type(messages_list)}")
return []
tuples = []
user_msg = None
for msg in messages_list:
if isinstance(msg, dict):
role = msg.get("role", "")
content = msg.get("content", "")
if role == "user":
user_msg = content
elif role == "assistant":
if user_msg is not None:
tuples.append((user_msg, content))
user_msg = None
else:
# Assistant message without user message, add empty user message
tuples.append((None, content))
elif isinstance(msg, tuple) and len(msg) == 2:
# Already in tuple format
tuples.append(msg)
# If there's a hanging user message, add it with empty assistant response
if user_msg is not None:
tuples.append((user_msg, ""))
logger.info(f"Converted {len(messages_list)} messages to {len(tuples)} tuples")
return tuples
def convert_from_tuples_format(tuples_list):
"""Convert tuples format to messages format"""
if not isinstance(tuples_list, list):
logger.warning(f"Expected list for tuples conversion, got {type(tuples_list)}")
return []
messages = []
for item in tuples_list:
if isinstance(item, tuple) and len(item) == 2:
user_msg, assistant_msg = item
if user_msg and user_msg.strip():
messages.append({"role": "user", "content": user_msg})
if assistant_msg and assistant_msg.strip():
messages.append({"role": "assistant", "content": assistant_msg})
elif isinstance(item, dict):
# Already in messages format
messages.append(item)
logger.info(f"Converted {len(tuples_list)} tuples to {len(messages)} messages")
return messages
def clear():
"""Clear the current conversation state"""
return dict(), uuid4()
class FollowupQuestions(BaseModel):
"""Model for langchain to use for structured output for followup questions"""
questions: list[str]
async def populate_followup_questions(end_of_chat_response: bool, history: list, uuid: UUID):
"""
Generate followup questions based on chat history in tuples format
Args:
end_of_chat_response (bool): Whether the chat response has ended
history (list): Chat history in tuples format [(user, bot), ...]
uuid (UUID): Session UUID
"""
if not end_of_chat_response or not history or len(history) == 0:
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
# Check if the last tuple has a bot response
if not history[-1][1]: # No bot response in the last tuple
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
try:
# Convert tuples format to messages format for LLM processing
messages = convert_from_tuples_format(history)
if not messages:
return *[gr.skip() for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
config = RunnableConfig(
run_name="populate_followup_questions",
configurable={"thread_id": str(uuid)}
)
weak_model_with_config = weak_model.with_config(config)
follow_up_questions = await weak_model_with_config.with_structured_output(FollowupQuestions).ainvoke([
("system", f"suggest {FOLLOWUP_QUESTION_NUMBER} followup questions for the user to ask the assistant. Refrain from asking personal questions."),
*messages,
])
if len(follow_up_questions.questions) != FOLLOWUP_QUESTION_NUMBER:
logger.warning("Invalid number of followup questions generated")
return *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
buttons.append(
gr.Button(follow_up_questions.questions[i], visible=True, elem_classes="chat-tab"),
)
return *buttons, False
except Exception as e:
logger.error(f"Error generating followup questions: {e}")
return *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)], False
async def summarize_chat(end_of_chat_response: bool, history: list, sidebar_summaries: dict, uuid: UUID):
"""Summarize chat for tab names using tuples format"""
should_return = (
not end_of_chat_response or
not history or
len(history) == 0 or
not history[-1][1] or # No bot response in last tuple
isinstance(sidebar_summaries, type(lambda x: x)) or
uuid in sidebar_summaries
)
if should_return:
return gr.skip(), gr.skip()
# Convert tuples format to messages format for processing
messages = convert_from_tuples_format(history)
# Filter valid messages
filtered_messages = []
for msg in messages:
if isinstance(msg, dict) and msg.get("content") and msg["content"].strip():
filtered_messages.append(msg)
# If we don't have any valid messages after filtering, provide a default summary
if not filtered_messages:
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "New Chat"
return sidebar_summaries, False
try:
config = RunnableConfig(
run_name="summarize_chat",
configurable={"thread_id": str(uuid)}
)
weak_model_with_config = weak_model.with_config(config)
summary_response = await weak_model_with_config.ainvoke([
("system", "summarize this chat in 7 tokens or less. Refrain from using periods"),
*filtered_messages,
])
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = summary_response.content[:50] # Limit length
except Exception as e:
logger.error(f"Error summarizing chat: {e}")
if uuid not in sidebar_summaries:
sidebar_summaries[uuid] = "Chat Session"
return sidebar_summaries, False
async def new_tab(uuid, gradio_graph, history, tabs, prompt, sidebar_summaries):
"""Create a new chat tab"""
new_uuid = uuid4()
new_graph = {}
# Save current tab if it has content
if history and len(history) > 0:
if uuid not in sidebar_summaries:
sidebar_summaries, _ = await summarize_chat(True, history, sidebar_summaries, uuid)
tabs[uuid] = {
"graph": gradio_graph,
"messages": history, # Store history as-is (tuples format)
"prompt": prompt,
}
# Clear suggestion buttons
suggestion_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
# Load initial greeting for new chat in tuples format
greeting_text = load_initial_greeting()
new_chat_history = [(None, greeting_text)]
new_prompt = prompt if prompt else "You are a helpful DIY assistant."
return new_uuid, new_graph, new_chat_history, tabs, new_prompt, sidebar_summaries, *suggestion_buttons
def switch_tab(selected_uuid, tabs, gradio_graph, uuid, history, prompt):
"""Switch to a different chat tab"""
try:
# Save current state if there are messages
if history and len(history) > 0:
tabs[uuid] = {
"graph": gradio_graph if gradio_graph else {},
"messages": history, # Store history as-is (tuples format)
"prompt": prompt
}
if selected_uuid not in tabs:
logger.error(f"Could not find the selected tab in tabs storage: {selected_uuid}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
selected_tab_state = tabs[selected_uuid]
selected_graph = selected_tab_state.get("graph", {})
selected_history = selected_tab_state.get("messages", []) # This should be tuples format
selected_prompt = selected_tab_state.get("prompt", "You are a helpful DIY assistant.")
suggestion_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
return selected_graph, selected_uuid, selected_history, tabs, selected_prompt, *suggestion_buttons
except Exception as e:
logger.error(f"Error switching tabs: {e}")
return gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), *[gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
def delete_tab(current_chat_uuid, selected_uuid, sidebar_summaries, tabs):
"""Delete a chat tab"""
output_history = gr.skip()
# If deleting the current tab, clear the chatbot
if current_chat_uuid == selected_uuid:
output_history = [] # Empty tuples list
# Remove from storage
if selected_uuid in tabs:
del tabs[selected_uuid]
if selected_uuid in sidebar_summaries:
del sidebar_summaries[selected_uuid]
return sidebar_summaries, tabs, output_history
def submit_edit_tab(selected_uuid, sidebar_summaries, text):
"""Submit edited tab name"""
if text.strip():
sidebar_summaries[selected_uuid] = text.strip()[:50] # Limit length
return sidebar_summaries, ""
def load_mesh(mesh_file_name):
"""Load a 3D mesh file"""
return mesh_file_name
def get_sorted_3d_model_examples():
"""Get sorted list of 3D model examples"""
examples_dir = Path("./generated_3d_models")
# Create directory if it doesn't exist
examples_dir.mkdir(exist_ok=True)
if not examples_dir.exists():
return []
# Get all 3D model files with desired extensions
model_files = [
file for file in examples_dir.glob("*")
if file.suffix.lower() in {".obj", ".glb", ".gltf"}
]
# Sort files by creation time (latest first)
try:
sorted_files = sorted(
model_files,
key=lambda x: x.stat().st_ctime,
reverse=True
)
except (OSError, AttributeError):
# Fallback to name sorting if stat fails
sorted_files = sorted(model_files, key=lambda x: x.name, reverse=True)
# Convert to format [[path1], [path2], ...]
return [[str(file)] for file in sorted_files]
CSS = """
footer {visibility: hidden}
.followup-question-button {font-size: 12px }
.chat-tab {
font-size: 12px;
padding-inline: 0;
}
.chat-tab.active {
background-color: #654343;
}
#new-chat-button { background-color: #0f0f11; color: white; }
.tab-button-control {
min-width: 0;
padding-left: 0;
padding-right: 0;
}
.sidebar-collapsed {
display: none !important;
}
.sidebar-replacement {
background-color: #f8f9fa;
border-left: 1px solid #dee2e6;
padding: 10px;
min-height: 400px;
}
.wrap.sidebar-parent {
min-height: 2400px !important;
height: 2400px !important;
}
#main-app {
height: 4600px;
overflow-y: auto;
padding-top: 20px;
}
"""
TRIGGER_CHATINTERFACE_BUTTON = """
function triggerChatButtonClick() {
const chatTextbox = document.getElementById("chat-textbox");
if (!chatTextbox) {
console.error("Error: Could not find element with id 'chat-textbox'");
return;
}
const button = chatTextbox.querySelector("button");
if (!button) {
console.error("Error: No button found inside the chat-textbox element");
return;
}
button.click();
}"""
if __name__ == "__main__":
logger.info("Starting the DIYO interface")
# Check if BrowserState is available
has_browser_state = hasattr(gr, 'BrowserState')
logger.info(f"BrowserState available: {has_browser_state}")
if not has_browser_state:
print("📝 Note: Using session-only state (data won't persist after refresh)")
print(" For data persistence, upgrade to Gradio 4.0+")
logger.warning("BrowserState not available in this Gradio version. Using regular State instead.")
logger.warning("To use BrowserState, upgrade Gradio: pip install gradio>=4.0.0")
else:
print("💾 Using persistent browser state (data persists after refresh)")
# Log available Gradio components for debugging
available_components = []
for attr_name in dir(gr):
if attr_name[0].isupper() and not attr_name.startswith('_'):
available_components.append(attr_name)
logger.info(f"Available Gradio components: {len(available_components)} components detected")
key_components = ['ChatInterface', 'Sidebar', 'BrowserState', 'MultimodalTextbox']
for component in key_components:
status = "✅" if hasattr(gr, component) else "❌"
logger.info(f" {status} {component}")
print() # Add spacing
with gr.Blocks(title="DIYO - DIY Assistant", fill_height=True, css=CSS, elem_id="main-app") as demo:
# State management - Use BrowserState if available, otherwise regular State
is_new_user_for_greeting = gr.State(True)
if has_browser_state:
current_prompt_state = gr.BrowserState(
value="You are a helpful DIY assistant.",
storage_key="current_prompt_state",
secret=BROWSER_STORAGE_SECRET,
)
current_uuid_state = gr.BrowserState(
value=uuid4(), # Call the function to get an actual UUID
storage_key="current_uuid_state",
secret=BROWSER_STORAGE_SECRET,
)
current_langgraph_state = gr.BrowserState(
value={}, # Empty dict instead of dict type
storage_key="current_langgraph_state",
secret=BROWSER_STORAGE_SECRET,
)
sidebar_names_state = gr.BrowserState(
value={}, # Empty dict instead of dict type
storage_key="sidebar_names_state",
secret=BROWSER_STORAGE_SECRET,
)
offloaded_tabs_data_storage = gr.BrowserState(
value={}, # Empty dict instead of dict type
storage_key="offloaded_tabs_data_storage",
secret=BROWSER_STORAGE_SECRET,
)
chatbot_message_storage = gr.BrowserState(
value=[], # Empty list instead of list type
storage_key="chatbot_message_storage",
secret=BROWSER_STORAGE_SECRET,
)
else:
# Fallback to regular State
current_prompt_state = gr.State("You are a helpful DIY assistant.")
current_uuid_state = gr.State(uuid4())
current_langgraph_state = gr.State({})
sidebar_names_state = gr.State({})
offloaded_tabs_data_storage = gr.State({})
chatbot_message_storage = gr.State([])
end_of_assistant_response_state = gr.State(False)
# Header
with gr.Row(elem_classes="header-margin"):
gr.Markdown("""
<div style="display: flex; align-items: center; justify-content: center; text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; margin-bottom: 20px; color: white; box-shadow: 0 4px 15px rgba(0,0,0,0.2);">
<h1>🔧 DIYO - Your DIY Assistant 🛠️</h1>
</div>
""")
# System prompt input
with gr.Row():
prompt_textbox = gr.Textbox(
label="System Prompt",
value="You are a helpful DIY assistant.",
show_label=True,
interactive=True,
placeholder="Enter custom system prompt..."
)
# Tool settings
with gr.Row():
checkbox_search_enabled = gr.Checkbox(
value=True,
label="Enable web search",
show_label=True,
visible=search_enabled,
scale=1,
)
checkbox_download_website_text = gr.Checkbox(
value=True,
show_label=True,
label="Enable downloading text from URLs",
scale=1,
)
# 3D Model display and controls
with gr.Row():
with gr.Column(scale=2):
model_3d_output = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model Viewer",
height=400
)
with gr.Column(scale=1):
model_3d_upload_button = gr.UploadButton(
"📁 Upload 3D Model (.obj, .glb, .gltf)",
file_types=[".obj", ".glb", ".gltf"],
)
model_3d_upload_button.upload(
fn=load_mesh,
inputs=model_3d_upload_button,
outputs=model_3d_output
)
# Examples with error handling and version compatibility
try:
examples_list = get_sorted_3d_model_examples()
if examples_list:
examples_kwargs = {
"label": "Example 3D Models",
"examples": examples_list,
"inputs": model_3d_upload_button,
"outputs": model_3d_output,
"fn": load_mesh,
}
# Check if cache_examples parameter is supported
try:
init_params = gr.Examples.__init__.__code__.co_varnames
if 'cache_examples' in init_params:
examples_kwargs["cache_examples"] = False
except Exception:
# Parameter not supported, skip it
pass
gr.Examples(**examples_kwargs)
except Exception as e:
logger.error(f"Error setting up 3D model examples: {e}")
# Chat interface setup - with compatibility checks
with gr.Row():
multimodal = False
# Check if MultimodalTextbox is available
if hasattr(gr, 'MultimodalTextbox') and multimodal:
textbox_component = gr.MultimodalTextbox
else:
textbox_component = gr.Textbox
multimodal = False # Force to False if not available
textbox_kwargs = {
"show_label": False,
"label": "Message",
"placeholder": "Type a message...",
"scale": 1,
"elem_id": "chat-textbox",
"lines": 1,
}
# Check if newer textbox parameters are supported
try:
init_params = textbox_component.__init__.__code__.co_varnames
if 'autofocus' in init_params:
textbox_kwargs["autofocus"] = True
if 'submit_btn' in init_params:
textbox_kwargs["submit_btn"] = True
if 'stop_btn' in init_params:
textbox_kwargs["stop_btn"] = True
except Exception as e:
logger.warning(f"Error checking textbox parameters: {e}")
# Keep minimal parameters as fallback
textbox = textbox_component(**textbox_kwargs)
# Check if newer Chatbot parameters are supported
chatbot_kwargs = {
"height": 400,
"elem_classes": "main-chatbox"
}
# Add parameters that might not be available in older versions
try:
# Check parameter availability without creating test instance
init_params = gr.Chatbot.__init__.__code__.co_varnames
# For older Gradio versions, don't try to set type parameter
# Let it default to 'tuples' format to avoid compatibility issues
if 'type' in init_params:
# Try to set type, but if it fails, let it default
try:
chatbot_kwargs["type"] = "tuples" # Use tuples for maximum compatibility
logger.info("Using 'tuples' type for chatbot (compatibility mode)")
except:
logger.warning("Could not set chatbot type, using default")
else:
logger.info("Chatbot 'type' parameter not supported, using default 'tuples' format")
# Check if 'show_copy_button' parameter is supported
if 'show_copy_button' in init_params:
chatbot_kwargs["show_copy_button"] = True
# Check if 'scale' parameter is supported
if 'scale' in init_params:
chatbot_kwargs["scale"] = 0
except Exception as e:
logger.warning(f"Error checking Chatbot parameters: {e}")
# Use minimal parameters as fallback
chatbot_kwargs = {"height": 400}
chatbot = gr.Chatbot(**chatbot_kwargs)
# Follow-up question buttons
with gr.Row():
followup_question_buttons = []
for i in range(FOLLOWUP_QUESTION_NUMBER):
btn = gr.Button(f"Button {i+1}", visible=False, elem_classes="followup-question-button")
followup_question_buttons.append(btn)
# Tab management state
tab_edit_uuid_state = gr.State("")
# Update prompt state when changed
prompt_textbox.change(
fn=lambda prompt: prompt,
inputs=[prompt_textbox],
outputs=[current_prompt_state]
)
# Chat History Sidebar (using simple approach for compatibility)
with gr.Column():
gr.Markdown("### Chat History")
@gr.render(inputs=[tab_edit_uuid_state, end_of_assistant_response_state, sidebar_names_state, current_uuid_state, chatbot, offloaded_tabs_data_storage])
def render_chats(tab_uuid_edit, end_of_chat_response, sidebar_summaries, active_uuid, messages, tabs):
# Ensure sidebar_summaries is a dict
if not isinstance(sidebar_summaries, dict):
sidebar_summaries = {}
# Current tab button
current_tab_button_text = sidebar_summaries.get(active_uuid, "Current Chat")
if active_uuid not in tabs or not tabs[active_uuid]:
unique_id = f"current-tab-{active_uuid}-{uuid4()}"
gr.Button(
current_tab_button_text,
elem_classes=["chat-tab", "active"],
elem_id=unique_id
)
# Historical tabs
for chat_uuid, tab in reversed(tabs.items()):
if not tab: # Skip empty tabs
continue
elem_classes = ["chat-tab"]
if chat_uuid == active_uuid:
elem_classes.append("active")
button_uuid_state = gr.State(chat_uuid)
with gr.Row():
# Delete button
clear_tab_button = gr.Button(
"🗑",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"delete-btn-{chat_uuid}-{uuid4()}"
)
clear_tab_button.click(
fn=delete_tab,
inputs=[
current_uuid_state,
button_uuid_state,
sidebar_names_state,
offloaded_tabs_data_storage
],
outputs=[
sidebar_names_state,
offloaded_tabs_data_storage,
chatbot
]
)
# Tab name/edit functionality
chat_button_text = sidebar_summaries.get(chat_uuid, str(chat_uuid)[:8])
if chat_uuid != tab_uuid_edit:
# Edit button
set_edit_tab_button = gr.Button(
"✎",
scale=0,
elem_classes=["tab-button-control"],
elem_id=f"edit-btn-{chat_uuid}-{uuid4()}"
)
set_edit_tab_button.click(
fn=lambda x: x,
inputs=[button_uuid_state],
outputs=[tab_edit_uuid_state]
)
# Tab button
chat_tab_button = gr.Button(
chat_button_text,
elem_id=f"chat-{chat_uuid}-{uuid4()}",
elem_classes=elem_classes,
scale=2
)
chat_tab_button.click(
fn=switch_tab,
inputs=[
button_uuid_state,
offloaded_tabs_data_storage,
current_langgraph_state,
current_uuid_state,
chatbot,
prompt_textbox
],
outputs=[
current_langgraph_state,
current_uuid_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
*followup_question_buttons
]
)
else:
# Edit textbox
chat_tab_text = gr.Textbox(
chat_button_text,
scale=2,
interactive=True,
show_label=False,
elem_id=f"edit-text-{chat_uuid}-{uuid4()}"
)
chat_tab_text.submit(
fn=submit_edit_tab,
inputs=[
button_uuid_state,
sidebar_names_state,
chat_tab_text
],
outputs=[
sidebar_names_state,
tab_edit_uuid_state
]
)
# New chat button and clear button
with gr.Row():
new_chat_button = gr.Button("➕ New Chat", elem_id="new-chat-button", scale=1)
# Check if variant parameter is supported for buttons
try:
clear_button_kwargs = {"scale": 1}
if 'variant' in gr.Button.__init__.__code__.co_varnames:
clear_button_kwargs["variant"] = "secondary"
clear_chat_button = gr.Button("🗑️ Clear Chat", **clear_button_kwargs)
except Exception as e:
logger.warning(f"Error creating clear button with variant: {e}")
clear_chat_button = gr.Button("🗑️ Clear Chat", scale=1)
# Clear functionality - implement manually since chatbot.clear() is not available in older Gradio versions
# We'll handle clearing through the clear chat button instead
# Main chat interface - with extensive compatibility checks
# Start with minimal required parameters
chat_interface_kwargs = {
"chatbot": chatbot,
"fn": chat_fn,
"textbox": textbox,
}
# Check if newer ChatInterface parameters are supported
try:
init_params = gr.ChatInterface.__init__.__code__.co_varnames
logger.info(f"ChatInterface supported parameters: {list(init_params)}")
# Check each parameter individually
if 'additional_inputs' in init_params:
chat_interface_kwargs["additional_inputs"] = [
current_langgraph_state,
current_uuid_state,
prompt_textbox,
checkbox_search_enabled,
checkbox_download_website_text,
]
logger.info("Added additional_inputs to ChatInterface")
if 'additional_outputs' in init_params:
chat_interface_kwargs["additional_outputs"] = [
current_langgraph_state,
end_of_assistant_response_state
]
logger.info("Added additional_outputs to ChatInterface")
else:
logger.warning("ChatInterface 'additional_outputs' not supported - some features may be limited")
# Use tuples format to match the Chatbot for compatibility
if 'type' in init_params:
chat_interface_kwargs["type"] = "tuples"
logger.info("Added type='tuples' to ChatInterface (matching Chatbot format)")
# Check if 'multimodal' parameter is supported
if 'multimodal' in init_params:
chat_interface_kwargs["multimodal"] = multimodal
logger.info(f"Added multimodal={multimodal} to ChatInterface")
except Exception as e:
logger.warning(f"Error checking ChatInterface parameters: {e}")
# Keep minimal parameters as fallback
# Try to create ChatInterface with compatibility handling
try:
chat_interface = gr.ChatInterface(**chat_interface_kwargs)
logger.info("ChatInterface created successfully")
except TypeError as e:
logger.error(f"ChatInterface creation failed: {e}")
logger.info("Falling back to minimal ChatInterface configuration")
# Fallback to absolute minimal configuration
try:
minimal_kwargs = {
"chatbot": chatbot,
"fn": lambda message, history: (message + " (processed)", history + [(message, message + " (processed)")]),
"textbox": textbox,
}
chat_interface = gr.ChatInterface(**minimal_kwargs)
logger.warning("Using minimal ChatInterface - advanced features disabled")
except Exception as fallback_error:
logger.error(f"Even minimal ChatInterface failed: {fallback_error}")
# Create manual chat functionality as last resort
chat_interface = None
logger.info("Creating manual chat interface as fallback")
# Manual chat submit function
def manual_chat_submit(message, history, graph_state, uuid_val, prompt, search_enabled, download_enabled):
"""Manual chat submission when ChatInterface is not available"""
try:
if not message.strip():
return history, "", graph_state
# Add user message in tuples format
if not isinstance(history, list):
history = []
# Create response tuple
response = f"Manual chat mode: {message} (ChatInterface not available in this Gradio version)"
history.append((message, response))
return history, "", graph_state
except Exception as e:
logger.error(f"Error in manual chat: {e}")
if not isinstance(history, list):
history = []
history.append((message, f"Error: {str(e)}"))
return history, "", graph_state
# Set up manual chat button
textbox.submit(
fn=manual_chat_submit,
inputs=[
textbox,
chatbot,
current_langgraph_state,
current_uuid_state,
prompt_textbox,
checkbox_search_enabled,
checkbox_download_website_text
],
outputs=[chatbot, textbox, current_langgraph_state]
)
# New chat button functionality
new_chat_button.click(
new_tab,
inputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
],
outputs=[
current_uuid_state,
current_langgraph_state,
chatbot,
offloaded_tabs_data_storage,
prompt_textbox,
sidebar_names_state,
*followup_question_buttons,
]
)
# Clear chat button functionality
def clear_current_chat():
"""Clear the current chat and reset state"""
new_state, new_uuid = clear()
# Clear followup buttons and return empty tuples list
cleared_buttons = [gr.Button(visible=False) for _ in range(FOLLOWUP_QUESTION_NUMBER)]
return [], new_state, new_uuid, *cleared_buttons
clear_chat_button.click(
fn=clear_current_chat,
inputs=[],
outputs=[
chatbot,
current_langgraph_state,
current_uuid_state,
*followup_question_buttons
]
)
# Follow-up button functionality
def click_followup_button(btn):
buttons = [gr.Button(visible=False) for _ in range(len(followup_question_buttons))]
return btn, *buttons
# Handle followup buttons based on whether ChatInterface is available
if chat_interface is not None:
for btn in followup_question_buttons:
try:
btn.click(
fn=click_followup_button,
inputs=[btn],
outputs=[
chat_interface.textbox if hasattr(chat_interface, 'textbox') else textbox,
*followup_question_buttons
]
).success(lambda: None, js=TRIGGER_CHATINTERFACE_BUTTON)
except Exception as e:
logger.warning(f"Error setting up followup button: {e}")
# Fallback to basic button functionality
btn.click(
fn=click_followup_button,
inputs=[btn],
outputs=[textbox, *followup_question_buttons]
)
else:
logger.warning("ChatInterface not available - followup buttons will have limited functionality")
for btn in followup_question_buttons:
btn.click(
fn=click_followup_button,
inputs=[btn],
outputs=[textbox, *followup_question_buttons]
)
# Event handlers for chatbot changes - with compatibility checks
def setup_change_handler(fn, inputs, outputs, trigger_mode=None):
"""Helper function to set up change handlers with optional trigger_mode"""
try:
# Get the change method's parameter names
change_params = chatbot.change.__code__.co_varnames
if trigger_mode and 'trigger_mode' in change_params:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs, trigger_mode=trigger_mode)
else:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs)
except Exception as e:
logger.warning(f"Error setting up change handler: {e}")
# Fallback to basic change handler
try:
return chatbot.change(fn=fn, inputs=inputs, outputs=outputs)
except Exception as fallback_error:
logger.error(f"Failed to set up change handler: {fallback_error}")
return None
setup_change_handler(
fn=populate_followup_questions,
inputs=[
end_of_assistant_response_state,
chatbot,
current_uuid_state
],
outputs=[
*followup_question_buttons,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
setup_change_handler(
fn=summarize_chat,
inputs=[
end_of_assistant_response_state,
chatbot,
sidebar_names_state,
current_uuid_state
],
outputs=[
sidebar_names_state,
end_of_assistant_response_state
],
trigger_mode="multiple"
)
setup_change_handler(
fn=lambda x: x,
inputs=[chatbot],
outputs=[chatbot_message_storage],
trigger_mode="always_last"
)
# Load event handlers - only add these if we have BrowserState
if has_browser_state:
@demo.load(
inputs=[is_new_user_for_greeting, chatbot_message_storage],
outputs=[chatbot_message_storage, is_new_user_for_greeting]
)
def handle_initial_greeting_load(current_is_new_user_flag: bool, existing_chat_history: list):
"""Handle initial greeting when the app loads"""
if current_is_new_user_flag:
greeting_message_text = load_initial_greeting()
if not isinstance(existing_chat_history, list):
existing_chat_history = []
# Always use tuples format for compatibility
greeting_entry = (None, greeting_message_text)
updated_chat_history = [greeting_entry] + existing_chat_history
updated_is_new_user_flag = False
logger.info("Greeting added for new user (tuples format).")
return updated_chat_history, updated_is_new_user_flag
else:
logger.info("Not a new user or already greeted.")
if not isinstance(existing_chat_history, list):
existing_chat_history = []
return existing_chat_history, False
@demo.load(inputs=[chatbot_message_storage], outputs=[chatbot])
def load_messages(history):
"""Load stored messages into chatbot"""
if isinstance(history, list):
return history
return []
@demo.load(inputs=[current_prompt_state], outputs=[prompt_textbox])
def load_prompt(current_prompt):
"""Load stored prompt"""
if current_prompt:
return current_prompt
return "You are a helpful DIY assistant."
else:
# For regular State, add a simple greeting on load
@demo.load(outputs=[chatbot])
def load_initial_greeting():
"""Load initial greeting for users without BrowserState"""
greeting_text = load_initial_greeting()
# Use tuples format for maximum compatibility
return [(None, greeting_text)]
# Launch the application
demo.launch(debug=True, share=True)