import streamlit as st from PIL import Image from tool_loader import ToolLoader from app_user_desc import app_user_desc from app_dev_desc import app_dev_desc from logger import log_response from logger import log_enabled from app_chat import app_chat import numpy as np import re,sys,unicodedata from app_agent_config import AgentConfig st.set_page_config( page_title="Custom Transformers can realy do anything...", page_icon="šŸ‘‹", ) # Create an instance of AgentConfig agent_config = AgentConfig() import streamlit as st import logging # Set up the logger transformers_logger = logging.getLogger("transformers.file_utils") # Load the logs from the Transformers library logs = transformers_logger.get_logs() # Create a Streamlit app # Add a button to trigger the modal st.button("Open App User Desc Modal") # Define a function to display the modal def display_modal(): # Display the logs in a modal st.write(logs) # Add the modal to the app st.add_modal(display_modal) ####### import pandas as pd from io import StringIO with st.sidebar: st.header("Set Tools and Option. ") with st.expander("Configure the agent and activate tools"): agent_config.configure() with st.expander("Set Content and Context"): agent_config.content_and_context() # Create a page with tabs tabs = st.tabs(["Chat","User Description"]) with tabs[0]: st.title("Hugging Face Agent and Tools") ## LB https://huggingface.co/spaces/qiantong-xu/toolbench-leaderboard st.markdown("Welcome to the Hugging Face Agent and Tools app! This app allows you to interact with various tools using the Hugging Face Inference API. CustomTransformers can do anything \nšŸ¤ŖšŸ¤—šŸ˜„šŸ¤—šŸ¤Ŗ.") #st.markdown("Start to chat. e.g. Generate an image of a boat. This will make the agent use the tool text2image to generate an image. Set content, context, Inference URL , tools and logging in the sidebar.") with tabs[1]: app_user_desc() app_chat(agent_config)