Spaces:
Sleeping
Sleeping
File size: 7,233 Bytes
4bec348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
import PIL.Image as Image
import io
import base64
import json
from typing import Union
def analyze_image(image: Image.Image) -> str:
"""
Analyze an image and return detailed information about it.
Args:
image: The image to analyze (can be base64 string or file upload)
Returns:
str: JSON string with image analysis including dimensions, format, mode, and orientation
"""
if image is None:
return json.dumps({"error": "No image provided"})
try:
# Get image properties
width, height = image.size
format_type = image.format or "Unknown"
mode = image.mode
orientation = "Portrait" if height > width else "Landscape" if width > height else "Square"
# Calculate aspect ratio
aspect_ratio = round(width / height, 2) if height > 0 else 0
# Get color information
colors = image.getcolors(maxcolors=256*256*256)
dominant_colors = len(colors) if colors else "Many"
analysis = {
"dimensions": {"width": width, "height": height},
"format": format_type,
"mode": mode,
"orientation": orientation,
"aspect_ratio": aspect_ratio,
"approximate_colors": dominant_colors,
"file_info": f"{width}x{height} {format_type} image in {mode} mode"
}
return json.dumps(analysis, indent=2)
except Exception as e:
return json.dumps({"error": f"Error analyzing image: {str(e)}"})
def get_image_orientation(image: Image.Image) -> str:
"""
Determine if an image is portrait, landscape, or square.
Args:
image: The image to check orientation
Returns:
str: "Portrait", "Landscape", or "Square"
"""
if image is None:
return "No image provided"
try:
width, height = image.size
if height > width:
return "Portrait"
elif width > height:
return "Landscape"
else:
return "Square"
except Exception as e:
return f"Error: {str(e)}"
def count_colors(image: Image.Image) -> str:
"""
Count the approximate number of unique colors in an image.
Args:
image: The image to analyze for color count
Returns:
str: Description of color count and dominant color information
"""
if image is None:
return "No image provided"
try:
# Convert to RGB if not already
if image.mode != 'RGB':
image = image.convert('RGB')
# Get colors (limit to prevent memory issues)
colors = image.getcolors(maxcolors=256*256*256)
if colors is None:
return "Image has more than 16.7 million unique colors"
# Sort by frequency
colors.sort(key=lambda x: x[0], reverse=True)
# Get top 3 colors
top_colors = colors[:3]
color_info = []
for count, color in top_colors:
if isinstance(color, tuple) and len(color) >= 3:
r, g, b = color[:3]
hex_color = f"#{r:02x}{g:02x}{b:02x}"
percentage = round((count / sum(c[0] for c in colors)) * 100, 1)
color_info.append(f"RGB{color} ({hex_color}) - {percentage}%")
result = f"Total unique colors: {len(colors)}\n"
result += "Top colors by frequency:\n" + "\n".join(color_info)
return result
except Exception as e:
return f"Error analyzing colors: {str(e)}"
def extract_text_info(image: Image.Image) -> str:
"""
Extract basic information about text-like content in an image.
Args:
image: The image to analyze for text content
Returns:
str: Basic information about potential text content
"""
if image is None:
return "No image provided"
try:
# Convert to grayscale for analysis
gray = image.convert('L')
# Get image statistics
extrema = gray.getextrema()
# Simple heuristics for text detection
contrast = extrema[1] - extrema[0]
analysis = {
"image_mode": image.mode,
"grayscale_range": f"{extrema[0]} to {extrema[1]}",
"contrast_level": "High" if contrast > 200 else "Medium" if contrast > 100 else "Low",
"potential_text": "Likely contains text" if contrast > 150 else "May contain text" if contrast > 100 else "Unlikely to contain text",
"note": "This is a basic analysis. For proper OCR, use specialized text extraction tools."
}
return json.dumps(analysis, indent=2)
except Exception as e:
return f"Error analyzing for text: {str(e)}"
# Create the Gradio interface
with gr.Blocks(title="Image Analysis MCP Server") as demo:
gr.Markdown("""
# Image Analysis MCP Server
This Gradio app serves as an MCP server that can analyze images sent from Claude or other MCP clients.
**Available Tools:**
- `analyze_image`: Get comprehensive image analysis (dimensions, format, colors, etc.)
- `get_image_orientation`: Check if image is portrait, landscape, or square
- `count_colors`: Analyze color information and dominant colors
- `extract_text_info`: Basic analysis for potential text content
**Usage with Claude Desktop:**
1. Deploy this to HuggingFace Spaces
2. Add the MCP configuration to Claude Desktop
3. Send images to Claude and ask it to analyze them using these tools
""")
# Create interface for each function (these will be exposed as MCP tools)
with gr.Tab("Image Analysis"):
with gr.Row():
img_input1 = gr.Image(type="pil", label="Upload Image")
analysis_output = gr.JSON(label="Analysis Result")
analyze_btn = gr.Button("Analyze Image")
analyze_btn.click(analyze_image, inputs=[img_input1], outputs=[analysis_output])
with gr.Tab("Orientation Check"):
with gr.Row():
img_input2 = gr.Image(type="pil", label="Upload Image")
orientation_output = gr.Textbox(label="Orientation")
orientation_btn = gr.Button("Check Orientation")
orientation_btn.click(get_image_orientation, inputs=[img_input2], outputs=[orientation_output])
with gr.Tab("Color Analysis"):
with gr.Row():
img_input3 = gr.Image(type="pil", label="Upload Image")
color_output = gr.Textbox(label="Color Analysis", lines=10)
color_btn = gr.Button("Analyze Colors")
color_btn.click(count_colors, inputs=[img_input3], outputs=[color_output])
with gr.Tab("Text Detection"):
with gr.Row():
img_input4 = gr.Image(type="pil", label="Upload Image")
text_output = gr.JSON(label="Text Analysis")
text_btn = gr.Button("Analyze for Text")
text_btn.click(extract_text_info, inputs=[img_input4], outputs=[text_output])
if __name__ == "__main__":
# Launch with MCP server enabled
demo.launch(mcp_server=True, share=True) |