Spaces:
Sleeping
Sleeping
File size: 8,394 Bytes
b55e829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
# MCP Integration with Minion Brain (Standalone Version)
This is a **standalone** MCP (Model Context Protocol) integration solution for Minion Brain.step that **does not depend on huggingface_hub** package. It provides a clean, lightweight tool integration approach.
## Features
- **π MCP Server Support**: Connect to stdio, SSE, and HTTP MCP servers
- **π Tool Adaptation**: Automatically converts MCP tools to brain.step compatible format
- **π§ Brain Integration**: Native support for tools in minion brain.step function
- **π₯ Gradio UI**: Web interface to configure and test MCP tools
- **βοΈ Environment Configuration**: Easy setup via environment variables
- **π Independence**: No dependency on huggingface_hub, completely self-contained
## Architecture
### Core Components
1. **BrainTool**: Adapter class that wraps MCP tools for brain.step compatibility
2. **MCPBrainClient**: Main client for managing MCP server connections
3. **Local Tools**: Built-in local tools (calculator, final answer, etc.)
### Tool Format Conversion
MCP tools are automatically converted to the format expected by brain.step:
```python
# MCP Tool (from server)
{
"name": "calculator",
"description": "Perform basic arithmetic operations",
"inputSchema": {
"type": "object",
"properties": {
"expression": {"type": "string"}
}
}
}
# Converted to BrainTool (for brain.step)
BrainTool(
name="calculator",
description="Perform basic arithmetic operations",
parameters={...},
session=mcp_session
)
```
## Installation
### 1. Install Dependencies
```bash
pip install -r requirements.txt
```
**Note**: This version **does not require** `huggingface_hub`, fewer dependencies!
### 2. Environment Configuration
Create a `.env` file:
```bash
# LLM Configuration
GPT_4O_API_TYPE=azure
GPT_4O_API_KEY=your_api_key_here
GPT_4O_BASE_URL=https://your-endpoint.openai.azure.com/
GPT_4O_API_VERSION=2024-06-01
GPT_4O_MODEL=gpt-4o
# MCP Server Configuration (optional)
MCP_SSE_URL=http://localhost:8080/sse
MCP_STDIO_COMMAND=python example_mcp_server.py
```
### 3. Quick Test
```bash
# Test local tools and MCP integration
python simple_mcp_test.py
```
## Usage
### Basic Usage
```python
from mcp_integration import MCPBrainClient, create_final_answer_tool, create_calculator_tool
async def example_usage():
# Create local tools
local_tools = [
create_calculator_tool(),
create_final_answer_tool()
]
# Optional: Add MCP tools
mcp_tools = []
try:
async with MCPBrainClient() as mcp_client:
await mcp_client.add_mcp_server("sse", url="http://localhost:8080/sse")
mcp_tools = mcp_client.get_tools_for_brain()
except:
pass # It's okay if there's no MCP server
# Combine all tools
all_tools = local_tools + mcp_tools
# Use in brain.step
obs, score, *_ = await brain.step(
query="Calculate 234*568",
route="raw",
check=False,
tools=all_tools
)
print(f"Result: {obs}")
```
### Using Only Local Tools
If you don't need to connect to external MCP servers:
```python
from mcp_integration import create_calculator_tool, create_final_answer_tool
# Create local tools
tools = [
create_calculator_tool(),
create_final_answer_tool()
]
# Use directly in brain.step
obs, score, *_ = await brain.step(
query="Calculate 234*568",
tools=tools
)
```
### Connecting to Different MCP Server Types
#### SSE Server
```python
await mcp_client.add_mcp_server(
"sse",
url="http://localhost:8080/sse",
headers={"Authorization": "Bearer token"},
timeout=30.0
)
```
#### Stdio Server
```python
await mcp_client.add_mcp_server(
"stdio",
command="python",
args=["example_mcp_server.py"],
cwd="/path/to/server"
)
```
#### HTTP Server
```python
await mcp_client.add_mcp_server(
"http",
url="http://localhost:8080/http",
timeout=timedelta(seconds=30)
)
```
### Creating Custom Local Tools
```python
def create_custom_tool():
class CustomSession:
async def call_tool(self, name: str, args: Dict[str, Any]) -> Dict[str, Any]:
# Your tool logic
result = f"Processed: {args}"
return {
"content": [{"type": "text", "text": result}]
}
return BrainTool(
name="custom_tool",
description="A custom tool",
parameters={
"type": "object",
"properties": {
"input": {"type": "string"}
}
},
session=CustomSession()
)
```
## Built-in Tools
### 1. Calculator Tool
```python
calculator_tool = create_calculator_tool()
result = await calculator_tool(expression="234 * 568")
# Output: "Calculation result: 234 * 568 = 132912"
```
### 2. Final Answer Tool
```python
final_tool = create_final_answer_tool()
result = await final_tool(answer="Calculation completed, result is 132912")
# Output: "Calculation completed, result is 132912"
```
### 3. Filesystem Tool (MCP)
```python
from mcp_integration import add_filesystem_tool
async with MCPBrainClient() as mcp_client:
# Add filesystem tool, specify allowed access paths
await add_filesystem_tool(mcp_client, workspace_paths=[
"/Users/femtozheng/workspace",
"/Users/femtozheng/python-project/minion-agent"
])
# Get tools and use
tools = mcp_client.get_tools_for_brain()
# Filesystem tools typically include: read_file, write_file, list_directory, etc.
```
**Filesystem Tool Features**:
- π **read_file**: Read file contents
- βοΈ **write_file**: Write to files
- π **list_directory**: List directory contents
- π **search_files**: Search files
- π **Security restriction**: Only access pre-configured paths
## Run Complete Application
```bash
python app_with_mcp.py
```
Then open `http://localhost:7860` in your browser and enable the "MCP Tools" option.
## Integration Patterns
### 1. Tool Discovery
The system automatically discovers and registers tools from connected MCP servers:
```python
tools = mcp_client.get_tools_for_brain()
print([tool.name for tool in tools])
```
### 2. Error Handling
Tools include built-in error handling:
```python
result = await tool(invalid_param="value")
# Returns: "Error: <error_description>"
```
### 3. Tool Execution
Tools execute asynchronously and return formatted results:
```python
result = await tool(expression="2+2")
# Result is automatically formatted for brain.step use
```
## Advantages
### Compared to huggingface_hub dependent version:
1. **Lighter**: Reduced large dependency packages
2. **Simpler**: Focus on core MCP integration functionality
3. **More flexible**: Not restricted by huggingface_hub versions
4. **Faster**: Less import and initialization time
5. **More independent**: Can run in any environment
## Troubleshooting
### Common Issues
1. **MCP Server Connection Failed**
- Check server URL and port
- Verify server is running
- Check network connectivity
2. **Tool Not Found**
- Verify MCP server has tools
- Check tool name spelling
- Ensure server initialization completed
3. **Import Errors**
- Install all required dependencies
- Check Python version compatibility
- Verify mcp package installation
### Debug Mode
Enable debug logging to troubleshoot issues:
```python
import logging
logging.basicConfig(level=logging.DEBUG)
```
## Advanced Configuration
### Tool Filtering
Filter tools by name or type:
```python
# Filter specific tools
filtered_tools = [
tool for tool in tools
if tool.name in ["calculator", "final_answer"]
]
```
### Tool Prioritization
Organize tools by priority:
```python
# High-priority tools first
priority_tools = ["final_answer", "calculator"]
other_tools = [t for t in tools if t.name not in priority_tools]
ordered_tools = priority_tools + other_tools
```
## Example Projects
Check `example_mcp_server.py` to learn how to create MCP servers, or run `simple_mcp_test.py` to see complete integration examples.
## Contributing
To extend the MCP integration:
1. Implement new tool adapters in `BrainTool`
2. Add server type support in `MCPBrainClient`
3. Enhance error handling and logging
4. Add new tool creation utilities
## License
MIT License - see LICENSE file for details. |