File size: 13,332 Bytes
af31cad
d80cfe4
 
cdba494
 
af31cad
d80cfe4
 
 
 
 
af31cad
cdba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d80cfe4
 
 
 
 
 
af31cad
cdba494
 
 
 
af31cad
cdba494
 
 
b55e829
cdba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55e829
 
 
 
 
 
 
d80cfe4
af31cad
cdba494
 
b55e829
cdba494
 
 
b55e829
cdba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55e829
 
cdba494
b55e829
cdba494
 
 
 
 
 
 
 
b55e829
 
 
 
cdba494
 
 
 
 
 
 
 
 
 
 
 
 
b55e829
 
 
 
 
 
 
cdba494
 
 
 
 
 
 
 
 
b55e829
 
 
 
 
 
 
 
 
cdba494
 
 
 
 
 
 
 
 
 
 
 
 
 
b55e829
cdba494
b55e829
cdba494
b55e829
cdba494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b55e829
 
 
 
 
 
 
cdba494
 
 
 
 
b55e829
cdba494
 
 
 
 
 
 
 
b55e829
cdba494
 
af31cad
d80cfe4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import gradio as gr
import asyncio
import os
from typing import Dict, Any
from dotenv import load_dotenv

from minion import config
from minion.main import LocalPythonEnv
from minion.main.rpyc_python_env import RpycPythonEnv
from minion.main.brain import Brain
from minion.providers import create_llm_provider

# Load .env file
load_dotenv()

class LLMConfig:
    def __init__(self, api_type: str, api_key: str, base_url: str, api_version: str, 
                 model: str, temperature: float = 0.7, max_tokens: int = 4000, 
                 vision_enabled: bool = False):
        self.api_type = api_type
        self.api_key = api_key
        self.base_url = base_url
        self.api_version = api_version
        self.model = model
        self.temperature = temperature
        self.max_tokens = max_tokens
        self.vision_enabled = vision_enabled

def get_preset_configs():
    """Get preset configurations"""
    presets = {
        "gpt-4o": LLMConfig(
            api_type=os.getenv("GPT_4O_API_TYPE", "azure"),
            api_key=os.getenv("GPT_4O_API_KEY", ""),
            base_url=os.getenv("GPT_4O_BASE_URL", ""),
            api_version=os.getenv("GPT_4O_API_VERSION", "2024-06-01"),
            model=os.getenv("GPT_4O_MODEL", "gpt-4o"),
            temperature=float(os.getenv("GPT_4O_TEMPERATURE", "0")),
            max_tokens=int(os.getenv("GPT_4O_MAX_TOKENS", "4000"))
        ),
        "gpt-4o-mini": LLMConfig(
            api_type=os.getenv("GPT_4O_MINI_API_TYPE", "azure"),
            api_key=os.getenv("GPT_4O_MINI_API_KEY", ""),
            base_url=os.getenv("GPT_4O_MINI_BASE_URL", ""),
            api_version=os.getenv("GPT_4O_MINI_API_VERSION", "2024-06-01"),
            model=os.getenv("GPT_4O_MINI_MODEL", "gpt-4o-mini"),
            temperature=float(os.getenv("GPT_4O_MINI_TEMPERATURE", "0.1")),
            max_tokens=int(os.getenv("GPT_4O_MINI_MAX_TOKENS", "4000"))
        ),
        "gpt-4.1": LLMConfig(
            api_type=os.getenv("GPT_41_API_TYPE", "azure"),
            api_key=os.getenv("GPT_41_API_KEY", ""),
            base_url=os.getenv("GPT_41_BASE_URL", ""),
            api_version=os.getenv("GPT_41_API_VERSION", "2025-03-01-preview"),
            model=os.getenv("GPT_41_MODEL", "gpt-4.1"),
            temperature=float(os.getenv("GPT_41_TEMPERATURE", "0.7")),
            max_tokens=int(os.getenv("GPT_41_MAX_TOKENS", "4000"))
        ),
        "o4-mini": LLMConfig(
            api_type=os.getenv("O4_MINI_API_TYPE", "azure"),
            api_key=os.getenv("O4_MINI_API_KEY", ""),
            base_url=os.getenv("O4_MINI_BASE_URL", ""),
            api_version=os.getenv("O4_MINI_API_VERSION", "2025-03-01-preview"),
            model=os.getenv("O4_MINI_MODEL", "o4-mini"),
            temperature=float(os.getenv("O4_MINI_TEMPERATURE", "0.7")),
            max_tokens=int(os.getenv("O4_MINI_MAX_TOKENS", "4000"))
        )
    }
    return presets

def get_default_config():
    """Get default configuration"""
    return LLMConfig(
        api_type=os.getenv("DEFAULT_API_TYPE", "azure"),
        api_key=os.getenv("DEFAULT_API_KEY", ""),
        base_url=os.getenv("DEFAULT_BASE_URL", ""),
        api_version=os.getenv("DEFAULT_API_VERSION", "2024-06-01"),
        model=os.getenv("DEFAULT_MODEL", "gpt-4o"),
        temperature=float(os.getenv("DEFAULT_TEMPERATURE", "0.7")),
        max_tokens=int(os.getenv("DEFAULT_MAX_TOKENS", "4000"))
    )

def get_available_routes():
    """Get available route options for current minion system"""
    return [
        "",            # Auto route selection (empty for automatic)
        "raw",         # Raw LLM output without processing
        "native",      # Native minion processing
        "cot",         # Chain of Thought reasoning
        "dcot",        # Dynamic Chain of Thought
        "plan",        # Planning-based approach
        "python"       # Python code execution
    ]

def create_custom_llm_config(api_type: str, api_key: str, base_url: str, 
                           api_version: str, model: str, temperature: float, 
                           max_tokens: int) -> Dict[str, Any]:
    """Create custom LLM configuration"""
    return {
        'api_type': api_type,
        'api_key': api_key,
        'base_url': base_url,
        'api_version': api_version,
        'model': model,
        'temperature': temperature,
        'max_tokens': max_tokens,
        'vision_enabled': False
    }

def build_brain_with_config(llm_config_dict: Dict[str, Any]):
    """Build brain with specified configuration"""
    # Create a config object similar to LLMConfig
    class Config:
        def __init__(self, config_dict):
            for key, value in config_dict.items():
                setattr(self, key, value)
    
    config_obj = Config(llm_config_dict)
    llm = create_llm_provider(config_obj)
    python_env = LocalPythonEnv(verbose=False)
    brain = Brain(
        python_env=python_env,
        llm=llm,
    )
    return brain

# Get preset configurations and default configuration
preset_configs = get_preset_configs()
default_config = get_default_config()
available_routes = get_available_routes()

async def minion_respond_async(query: str, preset_model: str, api_type: str, 
                             api_key: str, base_url: str, api_version: str, 
                             model: str, temperature: float, max_tokens: int,
                             route: str, query_type: str, check_enabled: bool):
    """Respond to query using specified configuration"""
    
    # If a preset model is selected, use preset configuration
    if preset_model != "Custom":
        config_obj = preset_configs.get(preset_model, default_config)
        llm_config_dict = {
            'api_type': config_obj.api_type,
            'api_key': config_obj.api_key,
            'base_url': config_obj.base_url,
            'api_version': config_obj.api_version,
            'model': config_obj.model,
            'temperature': config_obj.temperature,
            'max_tokens': config_obj.max_tokens,
            'vision_enabled': config_obj.vision_enabled
        }
    else:
        # Use custom configuration
        llm_config_dict = create_custom_llm_config(
            api_type, api_key, base_url, api_version, model, temperature, max_tokens
        )
    
    brain = build_brain_with_config(llm_config_dict)
    # Handle empty route selection for auto route
    route_param = route if route else None
    
    # Add query_type to kwargs if route is python
    kwargs = {'query': query, 'route': route_param, 'check': check_enabled}
    if route == "python" and query_type:
        kwargs['query_type'] = query_type
    
    obs, score, *_ = await brain.step(**kwargs)
    return obs

def minion_respond(query: str, preset_model: str, api_type: str, api_key: str, 
                  base_url: str, api_version: str, model: str, temperature: float, 
                  max_tokens: int, route: str, query_type: str, check_enabled: bool):
    """Gradio sync interface, automatically schedules async"""
    return asyncio.run(minion_respond_async(
        query, preset_model, api_type, api_key, base_url, 
        api_version, model, temperature, max_tokens, route, query_type, check_enabled
    ))

def update_fields(preset_model: str):
    """Update other fields when preset model is selected"""
    if preset_model == "Custom":
        # Return default values, let user configure themselves
        return (
            default_config.api_type,
            "",  # Don't display API key 
            default_config.base_url,
            default_config.api_version,
            default_config.model,
            default_config.temperature,
            default_config.max_tokens
        )
    else:
        config_obj = preset_configs.get(preset_model, default_config)
        # Ensure API type is from valid choices
        api_type = config_obj.api_type if config_obj.api_type in ["azure", "openai", "groq", "ollama", "anthropic", "gemini"] else "azure"
        return (
            api_type,
            "***hidden***",  # Hide API key display
            config_obj.base_url,
            config_obj.api_version,
            config_obj.model,
            config_obj.temperature,
            config_obj.max_tokens
        )

def update_query_type_visibility(route: str):
    """Show query_type dropdown only when route is python"""
    return gr.update(visible=(route == "python"))

# Create Gradio interface
with gr.Blocks(title="Minion Brain Chat") as demo:
    gr.Markdown("# Minion Brain Chat\nIntelligent Q&A powered by Minion1 Brain")
    
    with gr.Row():
        with gr.Column(scale=2):
            query_input = gr.Textbox(
                label="Enter your question",
                placeholder="Please enter your question...",
                lines=3
            )
            submit_btn = gr.Button("Submit", variant="primary")
            
            # Move Answer section to left column, closer to question input
            output = gr.Textbox(
                label="Answer",
                lines=10,
                show_copy_button=True
            )
            
        with gr.Column(scale=1):
            # Move route selection to the front
            route_dropdown = gr.Dropdown(
                label="Route",
                choices=available_routes,
                value="",
                info="empty: auto select, raw: direct LLM, native: standard, cot: chain of thought, dcot: dynamic cot, plan: planning, python: code execution"
            )
            
            # Add query_type option, visible only when route="python"
            query_type_dropdown = gr.Dropdown(
                label="Query Type",
                choices=["calculate", "code_solution", "generate"],
                value="calculate",
                visible=False,
                info="Type of query for python route"
            )
            
            # Add check option
            check_checkbox = gr.Checkbox(
                label="Enable Check",
                value=False,
                info="Enable output verification and validation"
            )
            
            preset_dropdown = gr.Dropdown(
                label="Preset Model",
                choices=["Custom"] + list(preset_configs.keys()),
                value="gpt-4o",
                info="Select preset configuration or custom"
            )
            
            api_type_input = gr.Dropdown(
                label="API Type",
                choices=["azure", "openai", "groq", "ollama", "anthropic", "gemini"],
                value=default_config.api_type,
                info="Select API provider type"
            )
            
            api_key_input = gr.Textbox(
                label="API Key",
                value="***hidden***",
                type="password",
                info="Your API key"
            )
            
            base_url_input = gr.Textbox(
                label="Base URL",
                value=default_config.base_url,
                info="API base URL"
            )
            
            api_version_input = gr.Textbox(
                label="API Version",
                value=default_config.api_version,
                info="API version (required for Azure)"
            )
            
            model_input = gr.Textbox(
                label="Model",
                value=default_config.model,
                info="Model name"
            )
            
            temperature_input = gr.Slider(
                label="Temperature",
                minimum=0.0,
                maximum=2.0,
                value=default_config.temperature,
                step=0.1,
                info="Control output randomness"
            )
            
            max_tokens_input = gr.Slider(
                label="Max Tokens",
                minimum=100,
                maximum=8000,
                value=default_config.max_tokens,
                step=100,
                info="Maximum number of tokens to generate"
            )
    
    # Update other fields when preset model changes
    preset_dropdown.change(
        fn=update_fields,
        inputs=[preset_dropdown],
        outputs=[api_type_input, api_key_input, base_url_input, 
                api_version_input, model_input, temperature_input, max_tokens_input]
    )
    
    # Update query_type visibility when route changes
    route_dropdown.change(
        fn=update_query_type_visibility,
        inputs=[route_dropdown],
        outputs=[query_type_dropdown]
    )
    
    # Submit button event
    submit_btn.click(
        fn=minion_respond,
        inputs=[query_input, preset_dropdown, api_type_input, api_key_input, 
               base_url_input, api_version_input, model_input, temperature_input, 
               max_tokens_input, route_dropdown, query_type_dropdown, check_checkbox],
        outputs=[output]
    )
    
    # Enter key submit
    query_input.submit(
        fn=minion_respond,
        inputs=[query_input, preset_dropdown, api_type_input, api_key_input, 
               base_url_input, api_version_input, model_input, temperature_input, 
               max_tokens_input, route_dropdown, query_type_dropdown, check_checkbox],
        outputs=[output]
    )

if __name__ == "__main__":
    demo.launch(mcp_server=True)