File size: 7,138 Bytes
f08d17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from torch.utils.data import DataLoader
import torch
import lightning as L
import yaml
import os
import time
import re

from datasets import load_dataset

from .data import ImageConditionDataset, Subject200KDataset, CartoonDataset, SceneDataset
from .model import OminiModel
from .callbacks import TrainingCallback
import safetensors.torch
from peft import PeftModel

import os
from PIL import Image
import pandas as pd
from torch.utils.data import Dataset

from torchvision import transforms
from torch.utils.data import DataLoader

class LocalSubjectsDataset(Dataset):
    def __init__(self, csv_file, image_dir, transform=None):
        self.data = pd.read_csv(csv_file)
        self.image_dir = image_dir
        self.transform = transform
        self.features = {
            'imageA': 'PIL.Image',
            'prompt': 'str',
            'imageB': 'PIL.Image'
        }

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        # ่Žทๅ–ๅ›พ็‰‡Aใ€ๆ่ฟฐๅ’Œๅ›พ็‰‡B็š„ๆ–‡ไปถๅ
        imgA_value = self.data.iloc[idx]['imageA']
        if isinstance(imgA_value, pd.Series):
            imgA_value = imgA_value.values[0]  
        imgA_name = os.path.join(self.image_dir, str(imgA_value)) 

        prompt = self.data.iloc[idx]['prompt']
        imgB_value = self.data.iloc[idx]['imageB']
        if isinstance(imgB_value, pd.Series):
            imgB_value = imgB_value.values[0]
        imgB_name = os.path.join(self.image_dir, str(imgB_value))

        imageA = Image.open(imgA_name).convert("RGB")
        imageB = Image.open(imgB_name).convert("RGB")

        if self.transform:
            imageA = self.transform(imageA)
            imageB = self.transform(imageB)

        sample = {'imageA': imageA, 'prompt': prompt, 'imageB': imageB}
        return sample
    
transform = transforms.Compose([
    transforms.Resize((600, 600)),
    # transforms.ToTensor(),
])


def get_rank():
    try:
        rank = int(os.environ.get("LOCAL_RANK"))
    except:
        rank = 0
    return rank


def get_config():
    config_path = os.environ.get("XFL_CONFIG")
    assert config_path is not None, "Please set the XFL_CONFIG environment variable"
    with open(config_path, "r") as f:
        config = yaml.safe_load(f)
    return config


def init_wandb(wandb_config, run_name):
    import wandb
    wandb.init(
            project=wandb_config["project"],
            name=run_name,
            config={},
        )


def main():
    # Initialize
    is_main_process, rank = get_rank() == 0, get_rank()
    torch.cuda.set_device(rank)
    config = get_config()
    training_config = config["train"]
    run_name = time.strftime("%Y%m%d-%H%M%S")

    # Initialize WanDB
    wandb_config = training_config.get("wandb", None)
    if wandb_config is not None and is_main_process:
        init_wandb(wandb_config, run_name)

    print("Rank:", rank)
    if is_main_process:
        print("Config:", config)

    # Initialize dataset and dataloader
    if training_config["dataset"]["type"] == "scene":
        dataset = LocalSubjectsDataset(csv_file='csv_path', image_dir='images_path', transform=transform)
        data_valid = dataset
        print(data_valid.features)
        print(len(data_valid))
        print(training_config["dataset"])
        dataset = SceneDataset(
            data_valid,
            condition_size=training_config["dataset"]["condition_size"],
            target_size=training_config["dataset"]["target_size"],
            image_size=training_config["dataset"]["image_size"],
            padding=training_config["dataset"]["padding"],
            condition_type=training_config["condition_type"],
            drop_text_prob=training_config["dataset"]["drop_text_prob"],
            drop_image_prob=training_config["dataset"]["drop_image_prob"],
        )
    elif training_config["dataset"]["type"] == "img":
        # Load dataset text-to-image-2M
        dataset = load_dataset(
            "webdataset",
            data_files={"train": training_config["dataset"]["urls"]},
            split="train",
            cache_dir="cache/t2i2m",
            num_proc=32,
        )
        dataset = ImageConditionDataset(
            dataset,
            condition_size=training_config["dataset"]["condition_size"],
            target_size=training_config["dataset"]["target_size"],
            condition_type=training_config["condition_type"],
            drop_text_prob=training_config["dataset"]["drop_text_prob"],
            drop_image_prob=training_config["dataset"]["drop_image_prob"],
            position_scale=training_config["dataset"].get("position_scale", 1.0),
        )
    elif training_config["dataset"]["type"] == "cartoon":
        dataset = load_dataset("saquiboye/oye-cartoon", split="train")
        dataset = CartoonDataset(
            dataset,
            condition_size=training_config["dataset"]["condition_size"],
            target_size=training_config["dataset"]["target_size"],
            image_size=training_config["dataset"]["image_size"],
            padding=training_config["dataset"]["padding"],
            condition_type=training_config["condition_type"],
            drop_text_prob=training_config["dataset"]["drop_text_prob"],
            drop_image_prob=training_config["dataset"]["drop_image_prob"],
        )
    elif training_config["dataset"]["type"] == "scene":
        dataset = dataset
    else:
        raise NotImplementedError

    print("Dataset length:", len(dataset))
    train_loader = DataLoader(
        dataset,
        batch_size=training_config["batch_size"],
        shuffle=True,
        num_workers=training_config["dataloader_workers"],
    )
    print("Trainloader generated.")

    # Initialize model
    trainable_model = OminiModel(
        flux_pipe_id=config["flux_path"],
        lora_config=training_config["lora_config"],
        device=f"cuda",
        dtype=getattr(torch, config["dtype"]),
        optimizer_config=training_config["optimizer"],
        model_config=config.get("model", {}),
        gradient_checkpointing=training_config.get("gradient_checkpointing", False),
    )

    training_callbacks = (
        [TrainingCallback(run_name, training_config=training_config)]
        if is_main_process
        else []
    )

    # Initialize trainer
    trainer = L.Trainer(
        accumulate_grad_batches=training_config["accumulate_grad_batches"],
        callbacks=training_callbacks,
        enable_checkpointing=False,
        enable_progress_bar=False,
        logger=False,
        max_steps=training_config.get("max_steps", -1),
        max_epochs=training_config.get("max_epochs", -1),
        gradient_clip_val=training_config.get("gradient_clip_val", 0.5),
    )

    setattr(trainer, "training_config", training_config)

    # Save config
    save_path = training_config.get("save_path", "./output")
    if is_main_process:
        os.makedirs(f"{save_path}/{run_name}")
        with open(f"{save_path}/{run_name}/config.yaml", "w") as f:
            yaml.dump(config, f)

    # Start training
    trainer.fit(trainable_model, train_loader)


if __name__ == "__main__":
    main()