Spaces:
Runtime error
Runtime error
File size: 7,138 Bytes
f08d17a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
from torch.utils.data import DataLoader
import torch
import lightning as L
import yaml
import os
import time
import re
from datasets import load_dataset
from .data import ImageConditionDataset, Subject200KDataset, CartoonDataset, SceneDataset
from .model import OminiModel
from .callbacks import TrainingCallback
import safetensors.torch
from peft import PeftModel
import os
from PIL import Image
import pandas as pd
from torch.utils.data import Dataset
from torchvision import transforms
from torch.utils.data import DataLoader
class LocalSubjectsDataset(Dataset):
def __init__(self, csv_file, image_dir, transform=None):
self.data = pd.read_csv(csv_file)
self.image_dir = image_dir
self.transform = transform
self.features = {
'imageA': 'PIL.Image',
'prompt': 'str',
'imageB': 'PIL.Image'
}
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
# ่ทๅๅพ็Aใๆ่ฟฐๅๅพ็B็ๆไปถๅ
imgA_value = self.data.iloc[idx]['imageA']
if isinstance(imgA_value, pd.Series):
imgA_value = imgA_value.values[0]
imgA_name = os.path.join(self.image_dir, str(imgA_value))
prompt = self.data.iloc[idx]['prompt']
imgB_value = self.data.iloc[idx]['imageB']
if isinstance(imgB_value, pd.Series):
imgB_value = imgB_value.values[0]
imgB_name = os.path.join(self.image_dir, str(imgB_value))
imageA = Image.open(imgA_name).convert("RGB")
imageB = Image.open(imgB_name).convert("RGB")
if self.transform:
imageA = self.transform(imageA)
imageB = self.transform(imageB)
sample = {'imageA': imageA, 'prompt': prompt, 'imageB': imageB}
return sample
transform = transforms.Compose([
transforms.Resize((600, 600)),
# transforms.ToTensor(),
])
def get_rank():
try:
rank = int(os.environ.get("LOCAL_RANK"))
except:
rank = 0
return rank
def get_config():
config_path = os.environ.get("XFL_CONFIG")
assert config_path is not None, "Please set the XFL_CONFIG environment variable"
with open(config_path, "r") as f:
config = yaml.safe_load(f)
return config
def init_wandb(wandb_config, run_name):
import wandb
wandb.init(
project=wandb_config["project"],
name=run_name,
config={},
)
def main():
# Initialize
is_main_process, rank = get_rank() == 0, get_rank()
torch.cuda.set_device(rank)
config = get_config()
training_config = config["train"]
run_name = time.strftime("%Y%m%d-%H%M%S")
# Initialize WanDB
wandb_config = training_config.get("wandb", None)
if wandb_config is not None and is_main_process:
init_wandb(wandb_config, run_name)
print("Rank:", rank)
if is_main_process:
print("Config:", config)
# Initialize dataset and dataloader
if training_config["dataset"]["type"] == "scene":
dataset = LocalSubjectsDataset(csv_file='csv_path', image_dir='images_path', transform=transform)
data_valid = dataset
print(data_valid.features)
print(len(data_valid))
print(training_config["dataset"])
dataset = SceneDataset(
data_valid,
condition_size=training_config["dataset"]["condition_size"],
target_size=training_config["dataset"]["target_size"],
image_size=training_config["dataset"]["image_size"],
padding=training_config["dataset"]["padding"],
condition_type=training_config["condition_type"],
drop_text_prob=training_config["dataset"]["drop_text_prob"],
drop_image_prob=training_config["dataset"]["drop_image_prob"],
)
elif training_config["dataset"]["type"] == "img":
# Load dataset text-to-image-2M
dataset = load_dataset(
"webdataset",
data_files={"train": training_config["dataset"]["urls"]},
split="train",
cache_dir="cache/t2i2m",
num_proc=32,
)
dataset = ImageConditionDataset(
dataset,
condition_size=training_config["dataset"]["condition_size"],
target_size=training_config["dataset"]["target_size"],
condition_type=training_config["condition_type"],
drop_text_prob=training_config["dataset"]["drop_text_prob"],
drop_image_prob=training_config["dataset"]["drop_image_prob"],
position_scale=training_config["dataset"].get("position_scale", 1.0),
)
elif training_config["dataset"]["type"] == "cartoon":
dataset = load_dataset("saquiboye/oye-cartoon", split="train")
dataset = CartoonDataset(
dataset,
condition_size=training_config["dataset"]["condition_size"],
target_size=training_config["dataset"]["target_size"],
image_size=training_config["dataset"]["image_size"],
padding=training_config["dataset"]["padding"],
condition_type=training_config["condition_type"],
drop_text_prob=training_config["dataset"]["drop_text_prob"],
drop_image_prob=training_config["dataset"]["drop_image_prob"],
)
elif training_config["dataset"]["type"] == "scene":
dataset = dataset
else:
raise NotImplementedError
print("Dataset length:", len(dataset))
train_loader = DataLoader(
dataset,
batch_size=training_config["batch_size"],
shuffle=True,
num_workers=training_config["dataloader_workers"],
)
print("Trainloader generated.")
# Initialize model
trainable_model = OminiModel(
flux_pipe_id=config["flux_path"],
lora_config=training_config["lora_config"],
device=f"cuda",
dtype=getattr(torch, config["dtype"]),
optimizer_config=training_config["optimizer"],
model_config=config.get("model", {}),
gradient_checkpointing=training_config.get("gradient_checkpointing", False),
)
training_callbacks = (
[TrainingCallback(run_name, training_config=training_config)]
if is_main_process
else []
)
# Initialize trainer
trainer = L.Trainer(
accumulate_grad_batches=training_config["accumulate_grad_batches"],
callbacks=training_callbacks,
enable_checkpointing=False,
enable_progress_bar=False,
logger=False,
max_steps=training_config.get("max_steps", -1),
max_epochs=training_config.get("max_epochs", -1),
gradient_clip_val=training_config.get("gradient_clip_val", 0.5),
)
setattr(trainer, "training_config", training_config)
# Save config
save_path = training_config.get("save_path", "./output")
if is_main_process:
os.makedirs(f"{save_path}/{run_name}")
with open(f"{save_path}/{run_name}/config.yaml", "w") as f:
yaml.dump(config, f)
# Start training
trainer.fit(trainable_model, train_loader)
if __name__ == "__main__":
main()
|