import os import argparse import json from PIL import Image import openai from tenacity import retry, wait_exponential, stop_after_attempt, retry_if_exception_type from utils import encode_image_to_datauri, cot_with_gpt, extract_instructions, infer_with_DiT, roi_localization, fusion def main(): parser = argparse.ArgumentParser(description="Evaluate single image + instruction using GPT-4o") parser.add_argument("image_path", help="Path to input image") parser.add_argument("json_path", help="Path to JSON file containing categories and instructions") args = parser.parse_args() openai.api_key = "YOUR_API_KEY" if not openai.api_key: raise ValueError("OPENAI_API_KEY environment variable not set.") os.makedirs("results", exist_ok=True) ####################################################### ### Load instructions from JSON ### ####################################################### try: with open(args.json_path, 'r') as f: data = json.load(f) categories = data.get('categories', []) instructions = data.get('instructions', []) if not categories or not instructions: raise ValueError("JSON file must contain 'categories' and 'instructions' arrays.") if len(categories) != len(instructions): raise ValueError("Length of 'categories' and 'instructions' must match.") print("Loaded instructions from JSON:") for i, (cat, instr) in enumerate(zip(categories, instructions)): print(f"Step {i+1}: [{cat}] {instr}") except Exception as e: raise ValueError(f"Failed to load JSON file: {str(e)}") ################################################### ### Neural Program Interpreter ### ################################################### for i in range(len(categories)): if i == 0: image = args.image_path else: image = f"results/{i-1}.png" category = categories[i] instruction = instructions[i] if category in ('Add', 'Remove', 'Replace', 'Action Change', 'Move', 'Resize'): if category in ('Add', 'Remove', 'Replace'): if category == 'Add': edited_image = infer_with_DiT('RoI Editing', image, instruction, category) else: mask_image = roi_localization(image, instruction, category) edited_image = infer_with_DiT('RoI Inpainting', mask_image, instruction, category) elif category == 'Action Change': mask_image = roi_localization(image, instruction, category) edited_image = infer_with_DiT('RoI Inpainting', mask_image, instruction, 'Remove') changed_instance, x0, y1, scale = infer_with_DiT('RoI Editing', image, instruction, category) fusion_image = fusion(edited_image, changed_instance, x0, y1, scale) edited_image = infer_with_DiT('RoI Compositioning', fusion_image, instruction, None) elif category in ('Move', 'Resize'): mask_image, changed_instance, x0, y1, scale = roi_localization(image, instruction, category) edited_image = infer_with_DiT('RoI Inpainting', mask_image, instruction, 'Remove') fusion_image = fusion(edited_image, changed_instance, x0, y1, scale) fusion_image.save("fusion.png") edited_image = infer_with_DiT('RoI Compositioning', fusion_image, instruction, None) elif category in ('Appearance Change', 'Background Change', 'Color Change', 'Material Change', 'Expression Change'): edited_image = infer_with_DiT('RoI Editing', image, instruction, category) elif category in ('Tone Transfer', 'Style Change'): edited_image = infer_with_DiT('Global Transformation', image, instruction, category) else: raise ValueError(f"Invalid category: '{category}'") image = edited_image image.save(f"results/{i}.png") print(f"Step {i+1} completed: {category} - {instruction}") if __name__ == "__main__": main()