#### general settings resume_training: resume_training: True resume: must id: waye95l7 #### datasets datasets: name: LOL train: train_path: /mnt/valab-datasets/LOL/train n_workers: 4 # per GPU batch_size_train: 4 cropsize: 256 # size you want to crop out as input sample. flips: True verbose: True crop_type: Random val: test_path: /mnt/valab-datasets/LOL/test cropsize: 256 batch_size_test: 1 #### network structures network: name: Network_v3 img_channels: 3 width: 32 middle_blk_num: 3 enc_blk_nums: [1, 2, 3] dec_blk_nums: [3, 1, 1] enc_blk_nums_map: None middle_blk_num_map: None residual_layers: 1 dilations: [1, 4] spatial: None extra_depth_wise: False #### training settings: learning rate scheme, loss train: lr_initial: !!float 5e-4 lr_scheme: CosineAnnealing betas: [0.9, 0.9] epochs: 500 lr_gamma: 0.5 weight_decay: !!float 1e-3 eta_min: !!float 1e-6 pixel_criterion: l1 pixel_weight: 1.0 perceptual: True perceptual_criterion: l1 perceptual_weight: 0.01 perceptual_reduction: mean edge: True edge_criterion: l2 edge_weight: 50.0 edge_reduction: mean frequency: True frequency_criterion: l2 frequency_weight: 0.01 frequency_reduction: mean #### save model save: path: ./models/Network_v3_interpolate.pt best: ./models/bests/ #### wandb: wandb: init: True project: LOLBlur entity: cidautai name: Network_v3_interpolate_extraDW_LOLBlur save_code: True