import streamlit as st from streamlit_drawable_canvas import st_canvas from keras.models import load_model import numpy as np import cv2 # Page config st.set_page_config(page_title="🖌️ MNIST Digit Recognizer", layout="centered") # Custom CSS styling st.markdown(""" """, unsafe_allow_html=True) # Title st.markdown('
🖌️ Handwritten Digit Recognizer
', unsafe_allow_html=True) st.markdown('
Draw any digit (0–9) and let the AI predict it!
', unsafe_allow_html=True) # Sidebar settings with st.sidebar: st.header("🎨 Drawing Settings") drawing_mode = st.selectbox("Drawing Tool", ("freedraw", "line", "rect", "circle", "transform")) stroke_width = st.slider("Stroke Width", 1, 25, 10) stroke_color = st.color_picker("Stroke Color", "#000000") bg_color = st.color_picker("Background Color", "#FFFFFF") bg_image = st.file_uploader("Background Image", type=["png", "jpg"]) realtime_update = st.checkbox("Realtime Update", True) # Load model @st.cache_resource def load_mnist_model(): return load_model("clone.keras") model = load_mnist_model() # Drawing canvas canvas_result = st_canvas( fill_color="rgba(255, 165, 0, 0.3)", stroke_width=stroke_width, stroke_color=stroke_color, background_color=bg_color, update_streamlit=realtime_update, height=280, width=280, drawing_mode=drawing_mode, key="canvas", ) # Prediction logic if canvas_result.image_data is not None: #st.image(canvas_result.image_data, caption="🖼️ Your Drawing", use_column_width=True) # Preprocess img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY) img = 255 - img img_resized = cv2.resize(img, (28, 28)) img_normalized = img_resized / 255.0 img_reshaped = img_normalized.reshape((1, 28, 28)) prediction = model.predict(img_reshaped) st.markdown( f"""
🔢 Predicted Digit: {np.argmax(prediction)}
""", unsafe_allow_html=True )