import streamlit as st
from streamlit_drawable_canvas import st_canvas
from keras.models import load_model
import numpy as np
import cv2
# Page config
st.set_page_config(page_title="🖌️ MNIST Digit Recognizer", layout="centered")
# Custom CSS styling
st.markdown("""
""", unsafe_allow_html=True)
# Title
st.markdown('
🖌️ Handwritten Digit Recognizer
', unsafe_allow_html=True)
st.markdown('Draw any digit (0–9) and let the AI predict it!
', unsafe_allow_html=True)
# Sidebar settings
with st.sidebar:
st.header("🎨 Drawing Settings")
drawing_mode = st.selectbox("Drawing Tool", ("freedraw", "line", "rect", "circle", "transform"))
stroke_width = st.slider("Stroke Width", 1, 25, 10)
stroke_color = st.color_picker("Stroke Color", "#000000")
bg_color = st.color_picker("Background Color", "#FFFFFF")
bg_image = st.file_uploader("Background Image", type=["png", "jpg"])
realtime_update = st.checkbox("Realtime Update", True)
# Load model
@st.cache_resource
def load_mnist_model():
return load_model("clone.keras")
model = load_mnist_model()
# Drawing canvas
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)",
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
update_streamlit=realtime_update,
height=280,
width=280,
drawing_mode=drawing_mode,
key="canvas",
)
# Prediction logic
if canvas_result.image_data is not None:
#st.image(canvas_result.image_data, caption="🖼️ Your Drawing", use_column_width=True)
# Preprocess
img = cv2.cvtColor(canvas_result.image_data.astype("uint8"), cv2.COLOR_RGBA2GRAY)
img = 255 - img
img_resized = cv2.resize(img, (28, 28))
img_normalized = img_resized / 255.0
img_reshaped = img_normalized.reshape((1, 28, 28))
prediction = model.predict(img_reshaped)
st.markdown(
f"""
🔢 Predicted Digit: {np.argmax(prediction)}
""", unsafe_allow_html=True
)