Spaces:
Running
Running
import streamlit as st | |
import os | |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage | |
hf = os.getenv('hf') | |
os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf | |
os.environ['HF_TOKEN'] = hf | |
# --- Config --- | |
st.set_page_config(page_title="AI Mentor Chat", layout="centered") | |
st.title("🤖 AI Mentor Chat") | |
# --- Sidebar for selections --- | |
st.sidebar.title("Mentor Preferences") | |
exp1 = ['<1', '1', '2', '3', '4', '5', '5+'] | |
exp = st.sidebar.selectbox("Select experience:", exp1) | |
# Map experience to label | |
experience_map = { | |
'<1': 'New bie mentor', | |
'1': '1', '2': '2', '3': '3', '4': '4', '5': '5', | |
'5+': 'Professional' | |
} | |
experience_label = experience_map[exp] | |
# --- Initialize Chat Model --- | |
deep_seek_skeleton = HuggingFaceEndpoint( | |
repo_id='meta-llama/Llama-3.2-3B-Instruct', | |
provider='sambanova', | |
temperature=0.7, | |
max_new_tokens=150, | |
task='conversational' | |
) | |
deep_seek = ChatHuggingFace( | |
llm=deep_seek_skeleton, | |
repo_id='meta-llama/Llama-3.2-3B-Instruct', | |
provider='sambanova', | |
temperature=0.7, | |
max_new_tokens=150, | |
task='conversational' | |
) | |
# --- Session State --- | |
PAGE_KEY = "python_chat_history" | |
try: | |
# --- Session State --- | |
if PAGE_KEY not in st.session_state: | |
st.session_state[PAGE_KEY] = [] | |
st.subheader("🗨️ Chat History") | |
for user, bot in st.session_state[PAGE_KEY]: | |
st.markdown(f"**You:** {user}") | |
st.markdown(f"**Mentor:** {bot}") | |
st.markdown("---") | |
# --- Chat Form --- | |
with st.form(key="chat_form"): | |
user_input = st.text_input("Ask your question:") | |
submit = st.form_submit_button("Send") | |
# --- Chat Logic --- | |
if submit and user_input: | |
# Add system context | |
system_prompt = f"""Act as a Python mentor with {experience_label} years of experience. Teach in a friendly, approachable manner while following these strict rules: | |
1. Only answer questions related to Python programming (including libraries, frameworks, and tools in the Python ecosystem) | |
2. For any non-Python query, respond with exactly: "I specialize only in Python programming. This appears to be a non-Python topic." | |
3. Never suggest you can help with non-Python topics | |
4. Keep explanations clear, practical, and beginner-friendly when appropriate | |
5. Include practical examples when explaining concepts | |
6. For advanced topics, assume the student has basic Python knowledge""" | |
# Create message list | |
messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] | |
# Get model response | |
result = deep_seek.invoke(messages) | |
# Append to history | |
st.session_state[PAGE_KEY].append((user_input, result.content)) | |
# --- Display Chat History --- | |
except: | |
st.warning('The token limit has reached please revisit in 24 hours!') | |
# import streamlit as st | |
# import os | |
# import langchain | |
# import langchain_huggingface | |
# from langchain_huggingface import HuggingFaceEndpoint,HuggingFacePipeline,ChatHuggingFace | |
# from langchain_core.messages import HumanMessage,AIMessage,SystemMessage | |
# deep_seek_skeleton = HuggingFaceEndpoint(repo_id='meta-llama/Llama-3.2-3B-Instruct', | |
# provider = 'sambanova', | |
# temperature=0.7, | |
# max_new_tokens=150, | |
# task = 'conversational') | |
# deep_seek = ChatHuggingFace(llm=deep_seek_skeleton, | |
# repo_id='meta-llama/Llama-3.2-3B-Instruct', | |
# provider = 'sambanova', | |
# temperature=0.7, | |
# max_new_tokens=150, | |
# task = 'conversational') | |
# exp1 = ['<1', '1', '2', '3', '4', '5', '5+'] | |
# exp = st.selectbox("Select experience:", exp1) | |
# if exp == '<1': | |
# experince = 'New bie mentor' | |
# elif exp == '1': | |
# experince = '1' | |
# elif exp == '2': | |
# experince = '2' | |
# elif exp == '3': | |
# experince = '3' | |
# elif exp == '4': | |
# experince = '4' | |
# elif exp == '5': | |
# experince = '5' | |
# elif exp == '5+': | |
# experince = 'professional' | |
# selec = ['Python', 'Machine Learning', 'Deep Learning', 'Statistics', 'SQL', 'Excel'] | |
# sub = st.selectbox("Select experience:", selec) | |
# user_input = st.text_input("Enter your query:") | |
# l = [] | |
# st.write(l) | |
# message = [SystemMessage(content=f'Act as {sub} mentor who has {experince} years of experience and the one who teaches in very friendly manner and also he explains everything within 150 words'), | |
# HumanMessage(content=user_input)] | |
# while user_input!='end': | |
# l.append(user_input) | |
# l.append(result.content) | |
# st.write(l) | |
# user_input = st.text_input("Enter your query:") | |
# message = [SystemMessage(content=f'Act as {sub} mentor who has {experince} years of experience and the one who teaches in very friendly manner and also he explains everything within 150 words'), | |
# HumanMessage(content=user_input)] | |
# result = deep_seek.invoke(message) | |