import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, AIMessage, SystemMessage hf = os.getenv('hf') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # --- Config --- st.set_page_config(page_title="AI Mentor Chat", layout="centered") st.title("🤖 AI Mentor Chat") # --- Sidebar for selections --- st.sidebar.title("Mentor Preferences") exp1 = ['<1', '1', '2', '3', '4', '5', '5+'] exp = st.sidebar.selectbox("Select experience:", exp1) # Map experience to label experience_map = { '<1': 'New bie mentor', '1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '5+': 'Professional' } experience_label = experience_map[exp] # --- Initialize Chat Model --- deep_seek_skeleton = HuggingFaceEndpoint( repo_id='meta-llama/Llama-3.2-3B-Instruct', provider='sambanova', temperature=0.7, max_new_tokens=150, task='conversational' ) deep_seek = ChatHuggingFace( llm=deep_seek_skeleton, repo_id='meta-llama/Llama-3.2-3B-Instruct', provider='sambanova', temperature=0.7, max_new_tokens=150, task='conversational' ) # --- Session State --- PAGE_KEY = "python_chat_history" try: # --- Session State --- if PAGE_KEY not in st.session_state: st.session_state[PAGE_KEY] = [] st.subheader("🗨️ Chat History") for user, bot in st.session_state[PAGE_KEY]: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---") # --- Chat Form --- with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # --- Chat Logic --- if submit and user_input: # Add system context system_prompt = f"""Act as a Python mentor with {experience_label} years of experience. Teach in a friendly, approachable manner while following these strict rules: 1. Only answer questions related to Python programming (including libraries, frameworks, and tools in the Python ecosystem) 2. For any non-Python query, respond with exactly: "I specialize only in Python programming. This appears to be a non-Python topic." 3. Never suggest you can help with non-Python topics 4. Keep explanations clear, practical, and beginner-friendly when appropriate 5. Include practical examples when explaining concepts 6. For advanced topics, assume the student has basic Python knowledge""" # Create message list messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] # Get model response result = deep_seek.invoke(messages) # Append to history st.session_state[PAGE_KEY].append((user_input, result.content)) # --- Display Chat History --- except: st.warning('The token limit has reached please revisit in 24 hours!') # import streamlit as st # import os # import langchain # import langchain_huggingface # from langchain_huggingface import HuggingFaceEndpoint,HuggingFacePipeline,ChatHuggingFace # from langchain_core.messages import HumanMessage,AIMessage,SystemMessage # deep_seek_skeleton = HuggingFaceEndpoint(repo_id='meta-llama/Llama-3.2-3B-Instruct', # provider = 'sambanova', # temperature=0.7, # max_new_tokens=150, # task = 'conversational') # deep_seek = ChatHuggingFace(llm=deep_seek_skeleton, # repo_id='meta-llama/Llama-3.2-3B-Instruct', # provider = 'sambanova', # temperature=0.7, # max_new_tokens=150, # task = 'conversational') # exp1 = ['<1', '1', '2', '3', '4', '5', '5+'] # exp = st.selectbox("Select experience:", exp1) # if exp == '<1': # experince = 'New bie mentor' # elif exp == '1': # experince = '1' # elif exp == '2': # experince = '2' # elif exp == '3': # experince = '3' # elif exp == '4': # experince = '4' # elif exp == '5': # experince = '5' # elif exp == '5+': # experince = 'professional' # selec = ['Python', 'Machine Learning', 'Deep Learning', 'Statistics', 'SQL', 'Excel'] # sub = st.selectbox("Select experience:", selec) # user_input = st.text_input("Enter your query:") # l = [] # st.write(l) # message = [SystemMessage(content=f'Act as {sub} mentor who has {experince} years of experience and the one who teaches in very friendly manner and also he explains everything within 150 words'), # HumanMessage(content=user_input)] # while user_input!='end': # l.append(user_input) # l.append(result.content) # st.write(l) # user_input = st.text_input("Enter your query:") # message = [SystemMessage(content=f'Act as {sub} mentor who has {experince} years of experience and the one who teaches in very friendly manner and also he explains everything within 150 words'), # HumanMessage(content=user_input)] # result = deep_seek.invoke(message)