import streamlit as st import os from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace from langchain_core.messages import HumanMessage, AIMessage, SystemMessage hf = os.getenv('hf') os.environ['HUGGINGFACEHUB_API_TOKEN'] = hf os.environ['HF_TOKEN'] = hf # --- Config --- st.set_page_config(page_title="AI Mentor Chat", layout="centered") st.title("🤖 AI Mentor Chat") # --- Sidebar for selections --- st.sidebar.title("Mentor Preferences") exp1 = ['<1', '1', '2', '3', '4', '5', '5+'] exp = st.sidebar.selectbox("Select experience:", exp1) # Map experience to label experience_map = { '<1': 'New bie mentor', '1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '5+': 'Professional' } experience_label = experience_map[exp] # --- Initialize Chat Model --- deep_seek_skeleton = HuggingFaceEndpoint( repo_id='marin-community/marin-8b-instruct', provider='together', temperature=0.7, max_new_tokens=110, task='conversational' ) deep_seek = ChatHuggingFace( llm=deep_seek_skeleton, repo_id='marin-community/marin-8b-instruct', provider='together', temperature=0.7, max_new_tokens=110, task='conversational' ) # --- Session State --- PAGE_KEY = "sql_chat_history" try: # --- Session State --- if PAGE_KEY not in st.session_state: st.session_state[PAGE_KEY] = [] # --- Chat Form --- with st.form(key="chat_form"): user_input = st.text_input("Ask your question:") submit = st.form_submit_button("Send") # --- Chat Logic --- if submit and user_input: # Add system context system_prompt = f"""Act as a SQL mentor with {experience_label} years of experience. Teach in a friendly, approachable manner while following these strict rules: 1. Only answer questions related to SQL (including frameworks) 2. For any non-SQL query, respond with exactly: "I specialize only in SQL programming. This appears to be a non-SQL topic." 3. Never suggest you can help with non-SQL topics 4. Keep explanations clear, practical, and beginner-friendly when appropriate 5. Include practical examples when explaining concepts 6. For advanced topics, assume the student has basic SQL knowledge""" # Create message list messages = [SystemMessage(content=system_prompt), HumanMessage(content=user_input)] # Get model response result = deep_seek.invoke(messages) # Append to history st.session_state[PAGE_KEY].append((user_input, result.content)) # --- Display Chat History --- st.subheader("🗨️ Chat History") for user, bot in st.session_state[PAGE_KEY]: st.markdown(f"**You:** {user}") st.markdown(f"**Mentor:** {bot}") st.markdown("---") except: st.warning('The token limit has reached please revisit in 24 hours!')