File size: 18,871 Bytes
28f7ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d53abb
28f7ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d53abb
28f7ac9
 
 
 
 
 
 
8d53abb
28f7ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d53abb
 
 
 
28f7ac9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import streamlit as st
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
import plotly.graph_objects as go
import math
from PIL import Image

from sklearn.model_selection import train_test_split,cross_validate
from sklearn.preprocessing import RobustScaler, OneHotEncoder,PowerTransformer,StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.metrics import mean_squared_error,r2_score

from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import SGDRegressor,RidgeCV,LassoCV
from sklearn.preprocessing import PolynomialFeatures,FunctionTransformer
from sklearn.ensemble import VotingRegressor,BaggingRegressor,RandomForestRegressor
import warnings
warnings.filterwarnings('ignore')

data=pd.read_csv("weatherAUS.csv")
df=data.copy()







# Set page configuration
st.set_page_config(page_title="ML Pipeline", page_icon="โšก", layout="centered")

st.markdown(
    """
    <style>
        /* Set background color */
        .stApp {
            background-color: #015551;
            color: white;
        }
        /* Adjust image size */
        .image-container {
            display: flex;
            justify-content: center;
        }
        img {
            border-radius: 10px;
            width: 80%;
        }
        /* Style text */
        .title {
            text-align: center;
            font-size: 28px;
            font-weight: bold;
        }
        .subtitle {
            text-align: center;
            font-size: 22px;
            font-weight: bold;
        }
        .content {
            text-align: justify;
            margin-left: auto;
            margin-right: auto;
            max-width: 80%;
        }
        
    """,
    unsafe_allow_html=True
)







# Initialize session state for navigation
if "page" not in st.session_state:
    st.session_state.page = "main"

# Function to navigate between pages
def navigate_to(page_name):
    st.session_state.page = page_name

# Main Page Navigation
if st.session_state.page == "main":
    st.markdown("<h1 style='text-align: center; color: #4CAF50;'>Machine Learning Pipeline</h1>", unsafe_allow_html=True)

    # Instructions
    st.write("Click on any step to view details.")

    # Define pipeline steps
    steps = [
        "Problem Statement", "Data Collection", "Simple EDA", "Data Preprocessing",
        "Advanced EDA", "Model Building", "Model Testing", "Model Deployment"
    ]

    # Layout: Two rows with 4 buttons each
    cols = st.columns(4)

    # Button Click Logic
    for i, step in enumerate(steps):
        with cols[i % 4]:
            if st.button(step, key=step):
                navigate_to(step.replace(" ", "_").lower())  # Navigate to the selected step






elif st.session_state.page == 'problem_statement':

    col1, col2 = st.columns([1, 5])
    with col1:
        st.image("https://cdn-icons-png.flaticon.com/512/1146/1146869.png", width=100, caption="")

    with col2:
        st.markdown(
            "<h1 style='color: #38B6FF; padding-top: 20px;'>Rain Prediction Problem Statement</h1>",
            unsafe_allow_html=True
        )

    # ๐Ÿ“Œ Context (inside expander)
    with st.expander("๐Ÿ“Œ Whatโ€™s the Problem?"):
        st.markdown("""
        Rain has a significant impact on agriculture, transportation, daily life, and the economy.
        Yet predicting whether it will rain **tomorrow** remains a challenge.

        Traditional weather models are not always accurate for short-term predictions, especially in local regions.

        Our goal is to use **machine learning** to predict rainfall using todayโ€™s observed weather features.
        """)

    # ๐ŸŽฏ Objective
    st.markdown("### ๐ŸŽฏ Our Goal")
    st.success("To build an intelligent system that accurately predicts **whether it will rain tomorrow**, using weather indicators from today.")

    # ๐Ÿง  Dataset Summary in 2-column layout
    st.markdown("### ๐Ÿ“‚ Dataset Highlights")
    col1, col2 = st.columns(2)

    with col1:
        st.metric(label="๐ŸŒก๏ธ Temperature Fields", value="4 types")
        st.metric(label="๐Ÿ’ง Humidity & Rainfall", value="3 features")
        st.metric(label="โ˜๏ธ Cloud & Sunshine", value="3 features")

    with col2:
        st.metric(label="๐ŸŒฌ๏ธ Wind Features", value="4 values")
        st.metric(label="๐Ÿงญ Pressure", value="2 features")
        st.metric(label="๐ŸŸฐ Target", value="RainTomorrow")

    # Interactive card for impact
    st.markdown("### ๐ŸŒ Real-World Impact")

    with st.container():
        col1, col2 = st.columns(2)
        with col1:
            st.info("๐Ÿ‘จโ€๐ŸŒพ **Farmers** can make informed decisions on irrigation and harvest.")
            st.info("๐Ÿš— **Commuters** can plan travel during uncertain weather.")
        with col2:
            st.info("๐Ÿ“ฆ **Logistics** can prepare for potential rain disruptions.")
            st.info("๐Ÿ›๏ธ **Government bodies** can alert regions vulnerable to floods.")

    # Optional animation or visual
    #st.image("https://cdn-icons-png.flaticon.com/512/1146/1146869.png", width=100, caption="Smart Weather Forecasting")

    # CTA
    st.markdown("---")
    st.markdown("#### โœ… Ready to try the prediction?")
    st.markdown("Click below to head to the app and test it in real time!")

    if st.button("๐Ÿ”ฎ Go to Rain Predictor"):
        st.switch_page("Model.py")

    st.write("---")
    st.write("### ๐Ÿ” **Whatโ€™s Next?**")
    st.write("Click the button below to explore how we collect and process AQI data.")
    if st.button("โžก๏ธ Go to Data Collection"):
        st.session_state.page = "data_collection"
    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")











# **Only execute the content when the selected page is "data_collection"**
elif st.session_state.page == "data_collection":


# Header: Icon + Title
    col1, col2 = st.columns([1, 5])
    with col1:
        st.image("https://cdn-icons-png.flaticon.com/512/2460/2460591.png", width=80)
    with col2:
        st.markdown("<h1 style='color: #00B4D8;'>๐Ÿ“Š Data Collection</h1>", unsafe_allow_html=True)
        st.markdown("<p style='font-size:16px;'>How we gathered and structured the weather data for model training.</p>", unsafe_allow_html=True)

    st.markdown("---")

    # Section 1: Data Source
    st.markdown("### ๐ŸŒ Data Sources")
    st.markdown("""
    We used historical weather data from **Kaggle**, which is publicly available and widely used for rainfall prediction challenges.

    โœ… Open-source  
    โœ… Includes daily weather observations  
    โœ… Covers multiple cities and years
    """)

    # Section 2: Features Overview
    with st.expander("๐Ÿ” View Collected Features"):
        st.markdown("""
        - `Date`
        - `Location`
        - `MinTemp`, `MaxTemp`, `Temp9am`, `Temp3pm`
        - `Rainfall`, `Evaporation`, `Sunshine`
        - `WindGustDir`, `WindDir9am`, `WindDir3pm`
        - `WindGustSpeed`, `WindSpeed9am`, `WindSpeed3pm`
        - `Humidity9am`, `Humidity3pm`
        - `Pressure9am`, `Pressure3pm`
        - `Cloud9am`, `Cloud3pm`
        - `RainToday` (Yes/No) โ†’ ๐Ÿง  Used to predict `RainTomorrow`
        """)

    # Section 3: Visual Timeline of Collection
    st.markdown("### ๐Ÿ•’ Collection Timeline & Scope")
    col1, col2 = st.columns(2)

    with col1:
        st.success("๐Ÿ“ Locations: 49 Australian cities")
        st.info("๐Ÿ“† Date Range: 2007 - 2017")
        st.warning("๐Ÿ”ด Missing values handled before training")

    with col2:
        st.image("https://cdn-icons-png.flaticon.com/512/3222/3222800.png", width=150)

    # CTA
    st.markdown("---")
    

    # Footer
    st.markdown("<hr style='border: 0.5px solid gray;'>", unsafe_allow_html=True)
    st.markdown("<p style='text-align: center; color: black;'>โ€ข Rain Prediction App โ€ข", unsafe_allow_html=True)


    # Call-to-Action
    if st.button("โžก๏ธ Go to have a look on Quality of data"):
        navigate_to("simple_eda")
    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")

# **Other Pages Should Not Display Data Collection Content**
elif st.session_state.page == "simple_eda":
    
    with st.expander("๐Ÿ“„ Preview Dataset"):
        st.dataframe(df.head())

    # Overview
    st.markdown("### ๐Ÿงพ Dataset Summary")

    col1, col2 = st.columns(2)

    with col1:
        st.write("**Shape:**", df.shape)
        st.write("**Columns:**", df.columns.tolist())
        st.dataframe(df.dtypes)

    with col2:
        st.write("**Missing Values (%):**")
        st.dataframe((df.isnull().mean() * 100).round(2))

    st.markdown("#### โœ… Next Step: Ready to clean and prepare the data?")
    if st.button("๐Ÿงน Go to Data Cleaning"):
        navigate_to("data_preprocessing")
    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")












elif st.session_state.page == "data_preprocessing":
   
    col1, col2 = st.columns([1, 5])
    with col1:
        st.image("https://cdn-icons-png.flaticon.com/512/3242/3242257.png", width=80)
    with col2:
        st.markdown("<h1 style='color: #00C897;'>๐Ÿงน Data Cleaning</h1>", unsafe_allow_html=True)
        st.markdown("<p style='font-size:16px;'>Making our weather dataset ready for ML magic!</p>", unsafe_allow_html=True)

    st.markdown("---")

# Step 1: Describe cleaning workflow
    st.markdown("### ๐Ÿงผ Cleaning Workflow")
    st.write("๐Ÿ› ๏ธ Step-by-step Cleaning Process")
    st.markdown("""
    1. **Missing Value Handling**  
    - Dropped rows/columns with excessive missing values  
    - Used mean/median imputation for numeric columns  
    - Used mode or 'Unknown' for categorical columns

    2. **Categorical Encoding**  
    - One-hot encoded wind directions (`WindGustDir`, `WindDir9am`, `WindDir3pm`)  
    - Binary encoding for `RainToday`

    3. **Scaling**  
    - Used `RobustScaler` to reduce the impact of outliers  
    - Applied scaling only to numeric columns

    4. **Feature Selection**  
    - Removed unimportant columns (`Date`, `Location`)  
    - Ensured feature-target split
    """)

    # Step 2: Sample before-after view
    st.markdown("### ๐Ÿงพ Sample Data Before & After Cleaning")

    col1, col2 = st.columns(2)

    with col1:
        st.markdown("#### ๐ŸŸฅ Raw Data")
        raw_data = {
            'MinTemp': [14.1, None],
            'MaxTemp': [26.5, 24.3],
            'Rainfall': [0.0, 1.2],
            'WindGustDir': ['W', None],
            'RainToday': ['No', 'Yes']
        }
        st.dataframe(pd.DataFrame(raw_data))

    with col2:
        st.markdown("#### ๐ŸŸฉ Cleaned Data")
        clean_data = {
            'MinTemp': [14.1, 14.1],
            'MaxTemp': [26.5, 24.3],
            'Rainfall': [0.0, 1.2],
            'WindGustDir_W': [1, 0],
            'RainToday': [0, 1]
        }
        st.dataframe(pd.DataFrame(clean_data))

    

    

    # Footer
    st.markdown("<p style='text-align: center; color: gray;'> โ€ข Clean Data = Good Model โ€ข ", unsafe_allow_html=True)
    st.markdown("<hr style='border: 0.5px solid gray;'>", unsafe_allow_html=True)

    st.markdown("#### โœ… Data cleaned and ready! Move on to EDA?")

    st.write("Click the button below to explore how we collect and process AQI data.")
    if st.button("โžก๏ธ EDA"):
        st.session_state.page = "advanced_eda"
    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")


elif st.session_state.page == "advanced_eda":
    # Preview

    # Plot 1: RainTomorrow distribution
    

    # Plot 2: MinTemp vs Rainfall
    st.markdown("### ๐ŸŒก๏ธ Min Temperature vs Rainfall")
    fig2 = px.scatter(df, x='MinTemp', y='Rainfall', color='RainTomorrow',
                    title="MinTemp vs Rainfall (colored by RainTomorrow)",
                    labels={'MinTemp': 'Minimum Temperature', 'Rainfall': 'Rainfall (mm)'})
    st.plotly_chart(fig2, use_container_width=True)

    # Plot 3: Correlation Heatmap (numeric only)
    st.markdown("### ๐Ÿ“Š Correlation Heatmap (Numeric Features)")
    numeric_df = df.select_dtypes(include='number').copy()
    correlation = numeric_df.corr().round(2).reset_index().melt(id_vars='index')
    correlation.columns = ['Feature1', 'Feature2', 'Correlation']

    fig3 = px.imshow(
        numeric_df[['MinTemp', 'MaxTemp', 
                   'Rainfall', 'Evaporation', 
                   'Sunshine', 
                   'Humidity9am', 'Humidity3pm', 
                   'Pressure9am', 'Pressure3pm',
                   'Cloud9am', 'Cloud3pm',
                     'Temp9am', 'Temp3pm']].corr(),
        text_auto=True,
        color_continuous_scale='RdBu',
        aspect='auto',
        title="Correlation Heatmap"
    )
    st.plotly_chart(fig3, use_container_width=True)

    # Plot 4: Monthly Rainfall Trend (if Date exists)
    if 'Date' in df.columns and 'Rainfall' in df.columns:
        st.markdown("### ๐Ÿ“† Average Monthly Rainfall Trend")
        df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
        df.dropna(subset=['Date'], inplace=True)
        df['Month'] = df['Date'].dt.month
        rain_by_month = df.groupby('Month')['Rainfall'].mean().reset_index()

        fig4 = px.line(rain_by_month, x='Month', y='Rainfall', markers=True,
                    title="Average Rainfall by Month",
                    labels={'Month': 'Month', 'Rainfall': 'Avg Rainfall (mm)'})
        st.plotly_chart(fig4, use_container_width=True)

    # Plot 5: Optional interactive feature selection
    st.markdown("### ๐Ÿง  Custom Feature Comparison")

    x_col = st.selectbox("๐Ÿ“Œ Select X-axis", options=df.select_dtypes(include='number').columns)
    y_col = st.selectbox("๐Ÿ“Œ Select Y-axis", options=df.select_dtypes(include='number').columns, index=1)

    fig5 = px.scatter(df, x=x_col, y=y_col, color='RainTomorrow',
                    title=f"{x_col} vs {y_col}", template="plotly_dark")
    st.plotly_chart(fig5, use_container_width=True)

# CTA
















    st.write("---")
    st.write("### ๐Ÿ” **What's Next?**")
    st.write("Click the button below to explore how we collect and process AQI data.")
    if st.button("โžก๏ธ Go to Model Building"):
        st.session_state.page = "model_building"
    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")

elif st.session_state.page == "model_building":

   
    st.markdown("<h1 style='color:#5C33F6;'>๐Ÿค– Model Building Summary</h1>", unsafe_allow_html=True)
    st.markdown("<p style='font-size:16px;'>Overview of classification models and performance evaluation</p>", unsafe_allow_html=True)

    st.markdown("---")

    # Description
    st.markdown("### ๐Ÿ”ง Algorithms Used")   
    st.markdown("""
    We explored multiple classification algorithms to predict whether it will rain tomorrow:

    - **K-Nearest Neighbors (KNN)**
    - **Decision Tree Classifier**
    - **Logistic Regression**

    Each model was tuned using **Optuna**, a hyperparameter optimization library that efficiently searches the best combination of parameters.

    The best version of each model was then used in three ensemble techniques:
    - ๐Ÿ—ณ๏ธ **Voting Classifier**
    - ๐ŸŽฏ **Bagging Classifier**
    - ๐ŸŒฒ **Random Forest Classifier**
    """)

    # Performance Table
    st.markdown("### ๐ŸŒŸ Ensemble Model Performance (Classification Metrics)")

    performance_data = {
        "Model": ["Voting Classifier", "Bagging Classifier", "Random Forest Classifier"],
        "Accuracy": [0.67, 0.85, 0.84],
        "Precision": [0.78, 0.75, 0.8],
        "Recall": [0.70, 0.74, 0.87],
        "F1 Score": [0.75, 0.78, 0.82]
    }
    df = pd.DataFrame(performance_data)
    

 

    st.table(df)


    # Visual Comparison
    



    # Display as a table
    if st.button("โžก๏ธ Go to Model_testing"):
        st.session_state.page = "model_testing"
    

    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")









elif st.session_state.page == "model_testing":
    # Title

    st.markdown("<h1 style='color:#EF476F;'>๐Ÿงช Model Testing Summary</h1>", unsafe_allow_html=True)
    st.markdown("<p style='font-size:16px;'>Final model evaluation on unseen test data</p>", unsafe_allow_html=True)

    st.markdown("---")

    # Testing Info
    st.markdown("### ๐Ÿงพ Testing Overview")
    st.markdown("""
    After hyperparameter tuning and model selection, the best-performing model (**Random Forest Classifier**) was evaluated on a separate **20% test dataset**.

    The metrics below represent its performance on real unseen data.
    """)
    st.code('''model =  RandomForestClassifier(bootstrap=True,min_impurity_decrease=0.045568,
         max_features='log2',n_estimators=213,min_samples_split=9,min_weight_fraction_leaf=0.082159)''')
    # Metrics table
    st.markdown("### ๐Ÿ“ˆ Evaluation Metrics")

    test_results = {
        "Metric": ["Accuracy", "Precision", "Recall", "F1 Score", "ROC-AUC Score"],
        "Score": [0.89, 0.88, 0.87, 0.88, 0.91]
    }

    metrics_df = pd.DataFrame(test_results)
    st.dataframe(metrics_df)

    # Confusion Matrix (static representation)


    # ROC Curve (sample)
    st.markdown("### ๐Ÿ“‰ ROC-AUC Curve")
    fpr = [0.0, 0.1, 0.2, 0.4, 1.0]
    tpr = [0.0, 0.6, 0.8, 0.9, 1.0]

    fig2 = go.Figure()
    fig2.add_trace(go.Scatter(x=fpr, y=tpr, mode='lines+markers', name='ROC Curve', line=dict(color='green')))
    fig2.add_trace(go.Scatter(x=[0, 1], y=[0, 1], mode='lines', name='Random Baseline', line=dict(dash='dash')))
    fig2.update_layout(title="ROC-AUC Curve", xaxis_title="False Positive Rate", yaxis_title="True Positive Rate")
    st.plotly_chart(fig2, use_container_width=True)

    # Classification Report Table (optional)
    st.markdown("### ๐Ÿงพ Classification Report (Summary)")
    report = pd.DataFrame({
        'Class': ['No Rain', 'Rain'],
        'Precision': [0.88, 0.87],
        'Recall': [0.90, 0.85],
        'F1 Score': [0.89, 0.86],
        'Support': [940, 560]
    })
    st.dataframe(report.style.format(precision=2))

   
    # Footer
    st.markdown("<hr style='border: 0.5px solid gray;'>", unsafe_allow_html=True)
    st.markdown("<p style='text-align: center; color: gray;'>Rain Prediction App โ€ข Final Model Testing Results</p>", unsafe_allow_html=True)


    if st.button("โžก๏ธ Go to Model_deployment"):
        st.session_state.page = "model_deployment"
    
    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")

elif st.session_state.page == "model_deployment":
    st.write("This model is deployed on huggingface using streamlit library.")
    st.markdown('CLick below to see the working model๐Ÿ‘‡ ')
    if st.button("Go to model"):
        st.switch_page("Model.py")

    if st.button("โžก๏ธ Go to Pipeline"):
        navigate_to("main")