import streamlit as st import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import math from PIL import Image from sklearn.model_selection import train_test_split,cross_validate from sklearn.preprocessing import RobustScaler, OneHotEncoder,PowerTransformer,StandardScaler from sklearn.compose import ColumnTransformer from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error,r2_score from sklearn.neighbors import KNeighborsRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.linear_model import SGDRegressor,RidgeCV,LassoCV from sklearn.preprocessing import PolynomialFeatures,FunctionTransformer from sklearn.ensemble import VotingRegressor,BaggingRegressor,RandomForestRegressor import warnings warnings.filterwarnings('ignore') data=pd.read_csv("weatherAUS.csv") df=data.copy() # Set page configuration st.set_page_config(page_title="ML Pipeline", page_icon="โšก", layout="centered") st.markdown( """