Spaces:
Paused
Paused
Commit
·
d25cc99
1
Parent(s):
f702238
added more debugging code and fixed up summarizer's input
Browse files
app.py
CHANGED
@@ -75,7 +75,6 @@ class RoleAgent:
|
|
75 |
f"Input: {input_text}\n"
|
76 |
f"Output:"
|
77 |
)
|
78 |
-
print("[DEBUG] prompt:", prompt)
|
79 |
encoding = self.tokenizer(prompt, return_tensors="pt")
|
80 |
inputs = {k: v.to(self.model.device) for k, v in encoding.items()}
|
81 |
|
@@ -89,13 +88,19 @@ class RoleAgent:
|
|
89 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
90 |
|
91 |
thinking = ""
|
92 |
-
print(response)
|
93 |
answer = response
|
94 |
-
if
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
answer
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
return {"thinking": thinking, "output": answer}
|
101 |
|
@@ -122,6 +127,19 @@ treatment_agent = RoleAgent(
|
|
122 |
model=model,
|
123 |
)
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# === Inference State ===
|
127 |
conversation_history = []
|
|
|
75 |
f"Input: {input_text}\n"
|
76 |
f"Output:"
|
77 |
)
|
|
|
78 |
encoding = self.tokenizer(prompt, return_tensors="pt")
|
79 |
inputs = {k: v.to(self.model.device) for k, v in encoding.items()}
|
80 |
|
|
|
88 |
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
89 |
|
90 |
thinking = ""
|
91 |
+
print(f"[RESPONSE]: {response}")
|
92 |
answer = response
|
93 |
+
if "Output:" in response:
|
94 |
+
# Split on the last occurrence of 'Output:' in case it's repeated
|
95 |
+
answer = response.rsplit("Output:", 1)[-1].strip()
|
96 |
+
else:
|
97 |
+
# Fallback: if thinking/answer/end tags exist, use previous logic
|
98 |
+
tags = ("THINKING:", "ANSWER:", "END")
|
99 |
+
if all(tag in response for tag in tags):
|
100 |
+
print("[FIX] tagged response detected:", response)
|
101 |
+
block = response.split("THINKING:", 1)[1].split("END", 1)[0]
|
102 |
+
thinking = block.split("ANSWER:", 1)[0].strip()
|
103 |
+
answer = block.split("ANSWER:", 1)[1].strip()
|
104 |
|
105 |
return {"thinking": thinking, "output": answer}
|
106 |
|
|
|
127 |
model=model,
|
128 |
)
|
129 |
|
130 |
+
"""[DEBUG] prompt: Instruction: You are a clinical summarizer trained to extract structured vignettes from doctor–patient dialogues.
|
131 |
+
Input: Doctor: What brings you in today?
|
132 |
+
Patient: I am a male. I am 15. My knee hurts. What may be the issue with my knee?
|
133 |
+
|
134 |
+
Previous Vignette:
|
135 |
+
Output:
|
136 |
+
Instruction: You are a clinical summarizer trained to extract structured vignettes from doctor–patient dialogues.
|
137 |
+
Input: Doctor: What brings you in today?
|
138 |
+
Patient: I am a male. I am 15. My knee hurts. What may be the issue with my knee?
|
139 |
+
|
140 |
+
Previous Vignette:
|
141 |
+
Output: The patient is a 15-year-old male presenting with knee pain."""
|
142 |
+
|
143 |
|
144 |
# === Inference State ===
|
145 |
conversation_history = []
|