Spaces:
Paused
Paused
Commit
Β·
fe61d2d
1
Parent(s):
dff880e
fxied tokenizer bug
Browse files
app.py
CHANGED
@@ -8,23 +8,29 @@ import gradio as gr
|
|
8 |
REPO_ID = "CodCodingCode/llama-3.1-8b-clinical"
|
9 |
SUBFOLDER = "checkpoint-45000"
|
10 |
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
|
|
|
|
11 |
|
12 |
-
# βββ
|
13 |
local_cache = snapshot_download(
|
14 |
repo_id=REPO_ID,
|
15 |
token=HF_TOKEN,
|
16 |
-
allow_patterns=[
|
|
|
|
|
|
|
17 |
)
|
18 |
|
19 |
-
# βββ
|
20 |
MODEL_DIR = os.path.join(local_cache, SUBFOLDER)
|
21 |
|
22 |
-
# βββ
|
23 |
tokenizer = AutoTokenizer.from_pretrained(
|
24 |
MODEL_DIR,
|
25 |
use_fast=False,
|
26 |
trust_remote_code=True,
|
27 |
)
|
|
|
28 |
model = AutoModelForCausalLM.from_pretrained(
|
29 |
MODEL_DIR,
|
30 |
device_map="auto",
|
@@ -45,9 +51,7 @@ class RoleAgent:
|
|
45 |
f"Input: {input_text}\n"
|
46 |
f"Output:"
|
47 |
)
|
48 |
-
# 1) Tokenize
|
49 |
encoding = tokenizer(prompt, return_tensors="pt")
|
50 |
-
# 2) Move each tensor to the model's device
|
51 |
inputs = {k: v.to(model.device) for k, v in encoding.items()}
|
52 |
|
53 |
outputs = model.generate(
|
@@ -59,19 +63,14 @@ class RoleAgent:
|
|
59 |
)
|
60 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
if
|
65 |
block = response.split("THINKING:")[1].split("END")[0]
|
66 |
thinking = block.split("ANSWER:")[0].strip()
|
67 |
answer = block.split("ANSWER:")[1].strip()
|
68 |
|
69 |
-
return {
|
70 |
-
"instruction": f"You are {self.role_instruction}.",
|
71 |
-
"input": input_text,
|
72 |
-
"thinking": thinking,
|
73 |
-
"output": answer,
|
74 |
-
}
|
75 |
|
76 |
|
77 |
# === Agents ===
|
|
|
8 |
REPO_ID = "CodCodingCode/llama-3.1-8b-clinical"
|
9 |
SUBFOLDER = "checkpoint-45000"
|
10 |
HF_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
11 |
+
if not HF_TOKEN:
|
12 |
+
raise RuntimeError("Missing HUGGINGFACE_HUB_TOKEN in env")
|
13 |
|
14 |
+
# βββ 1) Download only the files in checkpoint-45000/ βββ
|
15 |
local_cache = snapshot_download(
|
16 |
repo_id=REPO_ID,
|
17 |
token=HF_TOKEN,
|
18 |
+
allow_patterns=[
|
19 |
+
f"{SUBFOLDER}/*.json",
|
20 |
+
f"{SUBFOLDER}/*.safetensors",
|
21 |
+
],
|
22 |
)
|
23 |
|
24 |
+
# βββ 2) Point MODEL_DIR at that subfolder βββ
|
25 |
MODEL_DIR = os.path.join(local_cache, SUBFOLDER)
|
26 |
|
27 |
+
# βββ 3) Load tokenizer & model from disk βββ
|
28 |
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
MODEL_DIR,
|
30 |
use_fast=False,
|
31 |
trust_remote_code=True,
|
32 |
)
|
33 |
+
|
34 |
model = AutoModelForCausalLM.from_pretrained(
|
35 |
MODEL_DIR,
|
36 |
device_map="auto",
|
|
|
51 |
f"Input: {input_text}\n"
|
52 |
f"Output:"
|
53 |
)
|
|
|
54 |
encoding = tokenizer(prompt, return_tensors="pt")
|
|
|
55 |
inputs = {k: v.to(model.device) for k, v in encoding.items()}
|
56 |
|
57 |
outputs = model.generate(
|
|
|
63 |
)
|
64 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
|
66 |
+
thinking = ""
|
67 |
+
answer = response
|
68 |
+
if all(tag in response for tag in ("THINKING:", "ANSWER:", "END")):
|
69 |
block = response.split("THINKING:")[1].split("END")[0]
|
70 |
thinking = block.split("ANSWER:")[0].strip()
|
71 |
answer = block.split("ANSWER:")[1].strip()
|
72 |
|
73 |
+
return {"thinking": thinking, "output": answer}
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
# === Agents ===
|