import json import pandas as pd from pathlib import Path def load_leaderboard_from_json(json_path="leaderboard_data.json"): """Load leaderboard data from JSON file""" try: with open(json_path, 'r', encoding='utf-8') as f: data = json.load(f) return data['leaderboard'] except FileNotFoundError: print(f"JSON file {json_path} not found") return [] except json.JSONDecodeError: print(f"Error decoding JSON file {json_path}") return [] def create_leaderboard_df(json_path="leaderboard_data.json"): """Create a pandas DataFrame from JSON leaderboard data""" leaderboard_data = load_leaderboard_from_json(json_path) if not leaderboard_data: return pd.DataFrame() # Convert to DataFrame df = pd.DataFrame(leaderboard_data) # Sort by ACC score (descending) df = df.sort_values('Overall', ascending=False).reset_index(drop=True) # Add ranking icons and make model names clickable links to papers def add_ranking_icon_and_link(index, model_name, paper_link): if index == 0: return f'🥇 {model_name}' elif index == 1: return f'🥈 {model_name}' elif index == 2: return f'🥉 {model_name}' else: return f'{model_name}' # Format the DataFrame for display display_df = pd.DataFrame({ 'Model Name (clickable)': [add_ranking_icon_and_link(i, model, link) for i, (model, link) in enumerate(zip(df['model'], df['link']))], 'Release Date': df['release_date'], 'HF Model': df['hf'].apply(lambda x: f'🤗' if x != "-" else "-"), 'Open Source': df['open_source'].apply(lambda x: '✓' if x else '✗'), 'Overall': df['Overall'].apply(lambda x: f"{x:.2f}"), 'Style': df['Style'].apply(lambda x: f"{x:.2f}"), 'World Knowledge': df['World Knowledge'].apply(lambda x: f"{x:.2f}"), 'Logical Reasoning': df['Logical Reasoning'].apply(lambda x: f"{x:.2f}"), 'Text': df['Text'].apply(lambda x: f"{x:.2f}"), 'Attribute-Overall': df['Attribute-Overall'].apply(lambda x: f"{x:.2f}"), 'Quantity': df['Quantity'].apply(lambda x: f"{x:.2f}"), 'Expression': df['Expression'].apply(lambda x: f"{x:.2f}"), 'Material': df['Material'].apply(lambda x: f"{x:.2f}"), 'Size': df['Size'].apply(lambda x: f"{x:.2f}"), 'Shape': df['Shape'].apply(lambda x: f"{x:.2f}"), 'Color': df['Color'].apply(lambda x: f"{x:.2f}"), 'Action-Overall': df['Action-Overall'].apply(lambda x: f"{x:.2f}"), 'Hand': df['Hand'].apply(lambda x: f"{x:.2f}"), 'Full body': df['Full body'].apply(lambda x: f"{x:.2f}"), 'Animal': df['Animal'].apply(lambda x: f"{x:.2f}"), 'Non Contact': df['Non Contact'].apply(lambda x: f"{x:.2f}"), 'Contact': df['Contact'].apply(lambda x: f"{x:.2f}"), 'State': df['State'].apply(lambda x: f"{x:.2f}"), 'Relationship-Overall': df['Relationship-Overall'].apply(lambda x: f"{x:.2f}"), 'Composition': df['Composition'].apply(lambda x: f"{x:.2f}"), 'Similarity': df['Similarity'].apply(lambda x: f"{x:.2f}"), 'Inclusion': df['Inclusion'].apply(lambda x: f"{x:.2f}"), 'Comparison': df['Comparison'].apply(lambda x: f"{x:.2f}"), 'Compound-Overall': df['Compound-Overall'].apply(lambda x: f"{x:.2f}"), 'Imagination': df['Imagination'].apply(lambda x: f"{x:.2f}"), 'Feature matching': df['Feature matching'].apply(lambda x: f"{x:.2f}"), 'Grammar-Overall': df['Grammar-Overall'].apply(lambda x: f"{x:.2f}"), 'Pronoun Reference': df['Pronoun Reference'].apply(lambda x: f"{x:.2f}"), 'Consistency': df['Consistency'].apply(lambda x: f"{x:.2f}"), 'Negation': df['Negation'].apply(lambda x: f"{x:.2f}"), 'Layout-Overall': df['Layout-Overall'].apply(lambda x: f"{x:.2f}"), 'Two-dimensional': df['2D'].apply(lambda x: f"{x:.2f}"), 'Three-dimensional': df['3D'].apply(lambda x: f"{x:.2f}"), }) return display_df def get_leaderboard_stats(json_path="leaderboard_data.json"): """Get statistics about the leaderboard""" leaderboard_data = load_leaderboard_from_json(json_path) if not leaderboard_data: return {} df = pd.DataFrame(leaderboard_data) stats = { 'total_models': len(df), 'open_source_models': df['open_source'].sum(), } return stats