|
from dataclasses import dataclass |
|
from enum import Enum |
|
|
|
@dataclass |
|
class Task: |
|
benchmark: str |
|
metric: str |
|
col_name: str |
|
|
|
|
|
|
|
|
|
class Tasks(Enum): |
|
|
|
|
|
task0 = Task("mmlongbench_doc", "acc", "ACC") |
|
|
|
NUM_FEWSHOT = 0 |
|
|
|
|
|
|
|
|
|
|
|
TITLE = """<h1 align="center" id="space-title">π₯ <a href="https://github.com/CodeGoat24/UniGenBench" target="_blank">UniGenBench</a> Leaderboard (English Long)</h1> """ |
|
|
|
|
|
LINKS_AND_INFO = """ |
|
<div align="center"> |
|
<p><a href="https://hunyuan.tencent.com/" target="_blank">Hunyuan</a>, Tencent</p> <br> |
|
|
|
<a href="https://codegoat24.github.io/UnifiedReward/Pref-GRPO" target="_blank">π Homepage</a> | |
|
<a href="https://arxiv.org/pdf/2508.20751" target="_blank">π arXiv Paper</a> | |
|
<a href="https://huggingface.co/datasets/CodeGoat24/UniGenBench/tree/main">π Huggingface</a> |
|
|
|
<a href="https://github.com/CodeGoat24/UniGenBench" target="_blank" rel="noopener noreferrer"><img alt="Code" src="https://img.shields.io/github/stars/CodeGoat24/UniGenBench.svg?style=social&label=Official"></a> |
|
|
|
π
<a href="https://huggingface.co/spaces/CodeGoat24/UniGenBench_Leaderboard"><b>Leaderboard</b>(English)</a> | |
|
<a href="https://huggingface.co/spaces/CodeGoat24/UniGenBench_Leaderboard_Chinese"><b>Leaderboard</b>(Chinese)</a> | |
|
<a href="https://huggingface.co/spaces/CodeGoat24/UniGenBench_Leaderboard_English_Long"><b>Leaderboard</b>(English Long)</a> | |
|
<a href="https://huggingface.co/spaces/CodeGoat24/UniGenBench_Leaderboard_Chinese_Long"><b>Leaderboard</b>(Chinese Long)</a> π
|
|
|
|
</div> |
|
""" |
|
|
|
|
|
INTRODUCTION_TEXT = """ |
|
π [UniGenBench](https://github.com/CodeGoat24/UniGenBench) is a unified benchmark for T2I generation that integrates diverse prompt themes with a comprehensive suite of fine-grained evaluation criteria. |
|
|
|
π§ You can use the official [GitHub repo](https://github.com/CodeGoat24/UniGenBench) to evaluate your model on [UniGenBench](https://github.com/CodeGoat24/UniGenBench). |
|
|
|
π We release **all generated images from the T2I models** evaluated in our UniGenBench on [UniGenBench-Eval-Images](https://huggingface.co/datasets/CodeGoat24/UniGenBench-Eval-Images). Feel free to use any evaluation model that is convenient and suitable for you to assess and compare the performance of your models. |
|
|
|
π To add your own model to the leaderboard, please send an Email to [Yibin Wang](https://codegoat24.github.io/), then we will help with the evaluation and updating the leaderboard. |
|
|
|
""" |
|
|
|
|
|
|
|
|
|
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" |
|
CITATION_BUTTON_TEXT = r""" |
|
@article{UniGenBench&Pref-GRPO, |
|
title={Pref-GRPO: Pairwise Preference Reward-based GRPO for Stable Text-to-Image Reinforcement Learning}, |
|
author={Wang, Yibin and Li, Zhimin and Zang, Yuhang and Zhou, Yujie and Bu, Jiazi and Wang, Chunyu and Lu, Qinglin, and Jin, Cheng and Wang, Jiaqi}, |
|
journal={arXiv preprint arXiv:2508.20751}, |
|
year={2025} |
|
} |
|
""" |
|
|