Spaces:
Sleeping
Sleeping
| import torch | |
| def predict_unfairness(text, model, tokenizer): | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
| model.eval() | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| probabilities = torch.softmax(outputs.logits, dim=-1).squeeze() | |
| predicted_class = torch.argmax(probabilities).item() | |
| label_mapping = {0: 'clearly_fair', 1: 'potentially_unfair', 2: 'clearly_unfair'} | |
| predicted_label = label_mapping[predicted_class] | |
| return predicted_label, probabilities.tolist() |