Spaces:
Running
Running
File size: 73,612 Bytes
744e5e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 |
import os
import logging
import gradio as gr
from gradio.utils import get_space
from modal_sandbox import create_modal_sandbox
from pathlib import Path
import json
from datetime import datetime
import threading
import re
from openai import OpenAI, AzureOpenAI
from jupyter_handler import JupyterNotebook
if not get_space():
try:
from dotenv import load_dotenv
load_dotenv()
except (ImportError, ModuleNotFoundError):
pass
from jupyter_agent import (
run_interactive_notebook_with_session_state,
SessionStateManager,
)
TMP_DIR = './temp/'
# Environment and API key management utilities
def get_environment():
"""Get the current environment (dev/prod)"""
return os.environ.get("ENVIRONMENT", "prod").lower()
def is_dev_environment():
"""Check if running in development environment"""
return get_environment() == "dev"
def get_required_api_keys():
"""Get dictionary of required API keys and their current status"""
required_keys = {
"MODAL_TOKEN_ID": {
"value": os.environ.get("MODAL_TOKEN_ID"),
"required": True,
"description": "Modal Token ID for sandbox access"
},
"MODAL_TOKEN_SECRET": {
"value": os.environ.get("MODAL_TOKEN_SECRET"),
"required": True,
"description": "Modal Token Secret for sandbox access"
},
"HF_TOKEN": {
"value": os.environ.get("HF_TOKEN"),
"required": False,
"description": "Hugging Face Token for model access"
},
"PROVIDER_API_KEY": {
"value": os.environ.get("PROVIDER_API_KEY"),
"required": True,
"description": "AI Provider API Key (Anthropic, OpenAI, etc.)"
},
"PROVIDER_API_ENDPOINT": {
"value": os.environ.get("PROVIDER_API_ENDPOINT"),
"required": True,
"description": "AI Provider API Endpoint"
},
"MODEL_NAME": {
"value": os.environ.get("MODEL_NAME"),
"required": True,
"description": "Model name to use"
},
"TAVILY_API_KEY": {
"value": os.environ.get("TAVILY_API_KEY"),
"required": False,
"description": "Tavily API Key for web search functionality"
}
}
return required_keys
def get_missing_api_keys():
"""Get list of missing required API keys"""
required_keys = get_required_api_keys()
missing_keys = {}
for key, config in required_keys.items():
if config["required"] and not config["value"]:
missing_keys[key] = config
return missing_keys
def validate_api_key_format(key_name, key_value):
"""Basic validation for API key formats"""
if not key_value or not key_value.strip():
return False, "API key cannot be empty"
key_value = key_value.strip()
# Basic format validation
if key_name == "MODAL_TOKEN_ID" and not key_value.startswith("ak-"):
return False, "Modal Token ID should start with 'ak-'"
elif key_name == "MODAL_TOKEN_SECRET" and not key_value.startswith("as-"):
return False, "Modal Token Secret should start with 'as-'"
elif key_name == "HF_TOKEN" and not key_value.startswith("hf_"):
return False, "Hugging Face token should start with 'hf_'"
elif key_name == "PROVIDER_API_KEY":
# Check for common API key prefixes
valid_prefixes = ["sk-", "gsk_", "csk-"]
if not any(key_value.startswith(prefix) for prefix in valid_prefixes):
return False, "API key format may be invalid (expected prefixes: sk-, gsk_, csk-)"
elif key_name == "PROVIDER_API_ENDPOINT" and not (key_value.startswith("http://") or key_value.startswith("https://")):
return False, "API endpoint should start with http:// or https://"
elif key_name == "TAVILY_API_KEY" and not key_value.startswith("tvly-"):
return False, "Tavily API key should start with 'tvly-'"
return True, "Valid format"
def apply_user_api_keys(api_keys_dict):
"""Apply user-provided API keys to environment"""
for key, value in api_keys_dict.items():
if value and value.strip():
os.environ[key] = value.strip()
logger.info(f"Applied user-provided API key: {key}")
def get_previous_notebooks():
"""Get list of previous notebook sessions (dev only)"""
if not is_dev_environment():
return []
notebooks = []
tmp_dir = Path(TMP_DIR)
if not tmp_dir.exists():
return notebooks
for session_dir in tmp_dir.iterdir():
if session_dir.is_dir() and session_dir.name != ".":
notebook_file = session_dir / "jupyter-agent.ipynb"
if notebook_file.exists():
try:
# Get creation time and basic info
stat = notebook_file.stat()
size = stat.st_size
modified = stat.st_mtime
# Try to read basic notebook info
with open(notebook_file, 'r') as f:
notebook_data = json.load(f)
cell_count = len(notebook_data.get('cells', []))
# Format timestamp
formatted_time = datetime.fromtimestamp(modified).strftime("%Y-%m-%d %H:%M")
# Try to load session state for additional info
config_info = ""
try:
session_manager = SessionStateManager(session_dir.name, TMP_DIR)
session_state = session_manager.load_state()
if session_state:
hardware = session_state.get("hardware_config", {})
gpu = hardware.get("gpu_type", "unknown")
config_info = f", {gpu}"
except Exception:
pass
notebooks.append({
'session_id': session_dir.name,
'path': str(notebook_file),
'modified': modified,
'size': size,
'cell_count': cell_count,
'display_name': f"{session_dir.name} ({cell_count} cells{config_info}, {formatted_time})"
})
except Exception as e:
logger.warning(f"Failed to read notebook info for {session_dir.name}: {e}")
# Sort by modification time (newest first)
notebooks.sort(key=lambda x: x['modified'], reverse=True)
return notebooks
def parse_environment_variables(env_vars_text):
"""
Parse environment variables from text input
Args:
env_vars_text: String containing environment variables in KEY=value format, one per line
Returns:
dict: Dictionary of parsed environment variables
"""
env_dict = {}
if not env_vars_text or not env_vars_text.strip():
return env_dict
for line in env_vars_text.strip().split('\n'):
line = line.strip()
if not line or line.startswith('#'): # Skip empty lines and comments
continue
if '=' in line:
key, value = line.split('=', 1) # Split only on first =
key = key.strip()
value = value.strip()
if key: # Only add if key is not empty
env_dict[key] = value
else:
logger.warning(f"Skipping invalid environment variable format: {line}")
return env_dict
def create_notification_html(message, notification_type="info", show_spinner=False):
"""
Create HTML for notification messages
Args:
message: The notification message
notification_type: Type of notification ('info', 'success', 'warning', 'error')
show_spinner: Whether to show a loading spinner
"""
colors = {
'info': '#3498db',
'success': '#27ae60',
'warning': '#f39c12',
'error': '#e74c3c',
'loading': '#6c5ce7'
}
icons = {
'info': 'π',
'success': 'β
',
'warning': 'β οΈ',
'error': 'β',
'loading': 'β³'
}
color = colors.get(notification_type, colors['info'])
icon = icons.get(notification_type, icons['info'])
spinner_html = ""
if show_spinner or notification_type == 'loading':
spinner_html = """
<div style="
display: inline-block;
width: 20px;
height: 20px;
border: 2px solid #f3f3f3;
border-top: 2px solid {color};
border-radius: 50%;
animation: spin 1s linear infinite;
margin-right: 8px;
"></div>
<style>
@keyframes spin {{
0% {{ transform: rotate(0deg); }}
100% {{ transform: rotate(360deg); }}
}}
</style>
""".format(color=color)
return f"""
<div style="
background-color: {color}20;
border-left: 4px solid {color};
padding: 12px 16px;
margin: 10px 0;
border-radius: 4px;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
font-size: 14px;
color: #2c3e50;
display: flex;
align-items: center;
">
{spinner_html}
<strong>{icon} {message}</strong>
</div>
"""
def create_progress_notification(message, progress_percent=None):
"""Create a progress notification with optional progress bar"""
progress_html = ""
if progress_percent is not None:
progress_html = f"""
<div style="
width: 100%;
background-color: #e0e0e0;
border-radius: 5px;
margin-top: 8px;
height: 8px;
">
<div style="
width: {progress_percent}%;
background-color: #3498db;
height: 8px;
border-radius: 5px;
transition: width 0.3s ease;
"></div>
</div>
<small style="color: #666; margin-top: 4px; display: block;">{progress_percent}% complete</small>
"""
return create_notification_html(message, "loading", show_spinner=True) + progress_html
def initialize_phoenix_tracing():
"""Initialize Phoenix tracing with proper error handling and session support"""
try:
from phoenix.otel import register
phoenix_api_key = os.getenv("PHOENIX_API_KEY")
collector_endpoint = os.getenv("PHOENIX_COLLECTOR_ENDPOINT")
if not phoenix_api_key:
logger.info("Phoenix API key not found, skipping Phoenix tracing initialization")
return None
if not collector_endpoint:
logger.info("Phoenix collector endpoint not found, skipping Phoenix tracing initialization")
return None
logger.info("Initializing Phoenix tracing with session support...")
# Set required environment variables
os.environ["PHOENIX_API_KEY"] = phoenix_api_key
os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = collector_endpoint
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"api_key={phoenix_api_key}"
os.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={phoenix_api_key}"
# Configure the Phoenix tracer with OpenAI instrumentation enabled
tracer_provider = register(
project_name="eureka-agent",
auto_instrument=True, # Keep auto-instrument enabled for OpenAI tracing
set_global_tracer_provider=True
)
# Additional instrumentation setup for session tracking
try:
from openinference.instrumentation.openai import OpenAIInstrumentor
# Ensure OpenAI instrumentation is properly configured
if not OpenAIInstrumentor().is_instrumented_by_opentelemetry:
OpenAIInstrumentor().instrument()
logger.info("OpenAI instrumentation configured for Phoenix session tracking")
else:
logger.info("OpenAI instrumentation already active")
except ImportError:
logger.warning("OpenAI instrumentation not available - session grouping may not work optimally")
except Exception as e:
logger.warning(f"Failed to configure OpenAI instrumentation: {str(e)}")
logger.info("Phoenix tracing initialized successfully with session support")
return tracer_provider
except ImportError:
logger.info("Phoenix not installed, skipping tracing initialization")
return None
except Exception as e:
logger.warning(f"Failed to initialize Phoenix tracer (non-critical): {str(e)}")
return None
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('jupyter_agent.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Initialize Phoenix tracing
tracer_provider = initialize_phoenix_tracing()
MODAL_TOKEN_ID = os.environ.get("MODAL_TOKEN_ID")
MODAL_TOKEN_SECRET = os.environ.get("MODAL_TOKEN_SECRET")
HF_TOKEN = os.environ.get("HF_TOKEN")
SANDBOXES = {}
SANDBOX_TIMEOUT = 300
STOP_EVENTS = {} # Store stop events for each session
EXECUTION_STATES = {} # Store execution states for each session
# GPU configuration options for the UI
GPU_OPTIONS = [
("CPU Only", "cpu"),
("NVIDIA T4 (16GB)", "T4"),
("NVIDIA L4 (24GB)", "L4"),
("NVIDIA A100 40GB", "A100-40GB"),
("NVIDIA A100 80GB", "A100-80GB"),
("NVIDIA H100 (80GB)", "H100")
]
def initialize_openai_client():
"""Initialize OpenAI client with proper error handling and fallbacks"""
client = None
model_name = None
# Check if we have any API keys configured
has_azure = os.environ.get("AZURE_OPENAI_ENDPOINT") and os.environ.get("AZURE_OPENAI_API_KEY")
has_provider = os.environ.get("PROVIDER_API_ENDPOINT") and os.environ.get("PROVIDER_API_KEY")
has_openai = os.environ.get("OPENAI_API_KEY")
if not (has_azure or has_provider or has_openai):
logger.warning("No API keys found in environment - client will be initialized later when user provides keys")
return None, None
try:
# Option 1: Azure OpenAI
if has_azure:
logger.info("Initializing Azure OpenAI client")
client = AzureOpenAI(
api_version="2024-12-01-preview",
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
api_key=os.environ.get("AZURE_OPENAI_API_KEY")
)
model_name = os.environ.get("MODEL_NAME", "gpt-4") # Default fallback
logger.info(f"Azure OpenAI client initialized with model: {model_name}")
# Option 2: Custom Provider (Cerebras, etc.)
elif has_provider:
logger.info("Initializing custom provider OpenAI client")
client = OpenAI(
base_url=os.environ.get("PROVIDER_API_ENDPOINT"),
api_key=os.environ.get("PROVIDER_API_KEY")
)
model_name = os.environ.get("MODEL_NAME", "gpt-4") # Default fallback
logger.info(f"Custom provider client initialized with model: {model_name}")
# Option 3: Standard OpenAI
elif has_openai:
logger.info("Initializing standard OpenAI client")
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY")
)
model_name = os.environ.get("MODEL_NAME", "gpt-4") # Default fallback
logger.info(f"OpenAI client initialized with model: {model_name}")
# Test the client with a simple request (optional - skip if client initialization should be fast)
if client:
logger.info("Testing client connection...")
try:
# Simple test to verify the client works
_ = client.chat.completions.create(
model=model_name,
messages=[{"role": "user", "content": "Hello"}],
max_tokens=5
)
logger.info("Client connection test successful")
except Exception as test_error:
logger.error(f"Client connection test failed: {str(test_error)}")
# Don't raise here, let the main application handle it
return client, model_name
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
logger.warning("Client will be initialized later when user provides valid API keys")
return None, None
client, model_name = initialize_openai_client()
# If no client was initialized, it means no API keys are available
if client is None:
logger.info("No OpenAI client initialized - waiting for user to provide API keys through UI")
init_notebook = JupyterNotebook()
if not os.path.exists(TMP_DIR):
os.makedirs(TMP_DIR)
logger.info(f"Created temporary directory: {TMP_DIR}")
else:
logger.info(f"Using existing temporary directory: {TMP_DIR}")
with open(TMP_DIR+"jupyter-agent.ipynb", 'w', encoding='utf-8') as f:
json.dump(JupyterNotebook().data, f, indent=2)
logger.info(f"Initialized default notebook file: {TMP_DIR}jupyter-agent.ipynb")
try:
with open("system_prompt.txt", "r") as f:
DEFAULT_SYSTEM_PROMPT = f.read()
logger.info("Loaded system prompt from ds-system-prompt.txt")
except FileNotFoundError:
logger.warning("ds-system-prompt.txt not found, using fallback system prompt")
def execute_jupyter_agent(
user_input, files, message_history, gpu_type, cpu_cores, memory_gb, timeout_sec, env_vars_text,
modal_token_id, modal_token_secret, hf_token, provider_api_key, provider_api_endpoint, user_model_name,
tavily_api_key, enable_web_search, request: gr.Request
):
session_id = request.session_hash
logger.info(f"Starting execution for session {session_id}")
logger.info(f"Hardware config: GPU={gpu_type}, CPU={cpu_cores}, Memory={memory_gb}GB, Timeout={timeout_sec}s")
logger.info(f"User input length: {len(user_input)} characters")
# Check if execution is already running for this session
if session_id in EXECUTION_STATES and EXECUTION_STATES[session_id].get("running", False):
error_message = "β Execution already in progress for this session. Please wait for it to complete or stop it first."
error_notification = create_notification_html(error_message, "warning")
# Return current state without starting new execution
session_dir = os.path.join(TMP_DIR, session_id)
save_dir = os.path.join(session_dir, 'jupyter-agent.ipynb')
if os.path.exists(save_dir):
yield error_notification, message_history, save_dir
else:
yield error_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
return
# Initialize session state manager
session_manager = SessionStateManager(session_id, TMP_DIR)
# Check if this is a continuing session
existing_session_state = session_manager.load_state()
is_continuing_session = existing_session_state is not None
if is_continuing_session:
logger.info(f"Found existing session state for {session_id} - continuing from previous state")
else:
logger.info(f"No existing session state found for {session_id} - starting new session")
# Apply user-provided API keys if any are provided
user_api_keys = {}
if modal_token_id:
user_api_keys["MODAL_TOKEN_ID"] = modal_token_id
if modal_token_secret:
user_api_keys["MODAL_TOKEN_SECRET"] = modal_token_secret
if hf_token:
user_api_keys["HF_TOKEN"] = hf_token
if provider_api_key:
user_api_keys["PROVIDER_API_KEY"] = provider_api_key
if provider_api_endpoint:
user_api_keys["PROVIDER_API_ENDPOINT"] = provider_api_endpoint
if user_model_name:
user_api_keys["MODEL_NAME"] = user_model_name
if tavily_api_key:
user_api_keys["TAVILY_API_KEY"] = tavily_api_key
# Check if we have a client or need to initialize one with user keys
global client, model_name
if client is None and not user_api_keys:
missing_keys = get_missing_api_keys()
if missing_keys:
error_message = f"""β Missing Required API Keys
Please provide the following API keys to continue:
{chr(10).join([f"β’ {key}: {config['description']}" for key, config in missing_keys.items()])}
You can either:
1. Add them to your .env file, or
2. Enter them in the API Keys section above"""
error_notification = create_notification_html(error_message, "error")
yield error_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
return
# Validate user-provided API keys
if user_api_keys:
validation_message = "π Validating API keys..."
validation_notification = create_progress_notification(validation_message)
yield validation_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
validation_errors = []
for key, value in user_api_keys.items():
is_valid, message = validate_api_key_format(key, value)
if not is_valid:
validation_errors.append(f"{key}: {message}")
if validation_errors:
error_message = f"β API Key Validation Failed:\n" + "\n".join(f"β’ {error}" for error in validation_errors)
error_notification = create_notification_html(error_message, "error")
yield error_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
return
logger.info(f"Applying user-provided API keys: {list(user_api_keys.keys())}")
apply_user_api_keys(user_api_keys)
# Reinitialize OpenAI client with new keys if provider keys were updated
if any(key in user_api_keys for key in ["PROVIDER_API_KEY", "PROVIDER_API_ENDPOINT", "MODEL_NAME"]):
try:
reinit_message = "π Reinitializing AI client with new credentials..."
reinit_notification = create_progress_notification(reinit_message)
yield reinit_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
client, model_name = initialize_openai_client()
if client is None:
error_message = "Failed to initialize client with provided API keys. Please check your credentials."
logger.error(error_message)
error_notification = create_notification_html(error_message, "error")
yield error_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
return
logger.info("Reinitialized OpenAI client with user-provided keys")
success_message = "β
API credentials validated and applied successfully!"
success_notification = create_notification_html(success_message, "success")
yield success_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
except Exception as e:
error_message = f"Failed to initialize client with provided API keys: {str(e)}"
logger.error(error_message)
error_notification = create_notification_html(error_message, "error")
yield error_notification, message_history, TMP_DIR + "jupyter-agent.ipynb"
return
# Initialize or reset stop event for this session
STOP_EVENTS[session_id] = threading.Event()
EXECUTION_STATES[session_id] = {"running": True, "paused": False, "current_phase": "initializing"}
# Set up save directory early for notifications
session_dir = os.path.join(TMP_DIR, request.session_hash)
os.makedirs(session_dir, exist_ok=True)
save_dir = os.path.join(session_dir, 'jupyter-agent.ipynb')
# Create initial notebook file so it exists for Gradio
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(init_notebook.data, f, indent=2)
logger.info(f"Initialized notebook for session {session_id}")
# Session configuration is now handled by SessionStateManager
if request.session_hash not in SANDBOXES:
logger.info(f"Creating new Modal sandbox for session {session_id}")
# Show initialization notification with spinner
gpu_info = gpu_type.upper() if gpu_type != "cpu" else "CPU Only"
if gpu_type in ["T4", "L4", "A100-40GB", "A100-80GB", "H100"]:
gpu_info = f"NVIDIA {gpu_type}"
init_message = f"Initializing {gpu_info} sandbox with {cpu_cores} CPU cores and {memory_gb}GB RAM..."
notification_html = create_progress_notification(init_message)
yield notification_html, message_history, save_dir
# Create Modal sandbox with user-specified configuration
environment_vars = {}
if MODAL_TOKEN_ID and MODAL_TOKEN_SECRET:
environment_vars.update({
"MODAL_TOKEN_ID": MODAL_TOKEN_ID,
"MODAL_TOKEN_SECRET": MODAL_TOKEN_SECRET
})
logger.debug(f"Modal credentials configured for session {session_id}")
# Parse and add user-provided environment variables
user_env_vars = parse_environment_variables(env_vars_text)
if user_env_vars:
environment_vars.update(user_env_vars)
logger.info(f"Added {len(user_env_vars)} custom environment variables for session {session_id}")
logger.debug(f"Custom environment variables: {list(user_env_vars.keys())}")
try:
SANDBOXES[request.session_hash] = create_modal_sandbox(
gpu_config=gpu_type,
cpu_cores=cpu_cores,
memory_gb=memory_gb,
timeout=int(timeout_sec),
environment_vars=environment_vars
)
logger.info(f"Successfully created Modal sandbox for session {session_id}")
# Show success notification
success_message = f"β¨ {gpu_info} sandbox ready! Environment initialized with all packages."
success_notification_html = create_notification_html(success_message, "success")
yield success_notification_html, message_history, save_dir
except Exception as e:
logger.error(f"Failed to create Modal sandbox for session {session_id}: {str(e)}")
# Show error notification
error_message = f"Failed to initialize sandbox: {str(e)}"
error_notification_html = create_notification_html(error_message, "error")
yield error_notification_html, message_history, save_dir
raise
else:
logger.info(f"Reusing existing Modal sandbox for session {session_id}")
# Show reuse notification
gpu_info = gpu_type.upper() if gpu_type != "cpu" else "CPU Only"
if gpu_type in ["T4", "L4", "A100-40GB", "A100-80GB", "H100"]:
gpu_info = f"NVIDIA {gpu_type}"
reuse_message = f"Using existing {gpu_info} sandbox - ready to execute!"
reuse_notification_html = create_notification_html(reuse_message, "success")
yield reuse_notification_html, message_history, save_dir
sbx = SANDBOXES[request.session_hash]
logger.debug(f"Notebook will be saved to: {save_dir}")
# Initial notebook render
yield init_notebook.render(), message_history, save_dir
filenames = []
if files is not None:
logger.info(f"Processing {len(files)} uploaded files for session {session_id}")
for filepath in files:
filpath = Path(filepath)
try:
# Get file size for verification
file_size = os.path.getsize(filepath)
with open(filepath, "rb") as file:
logger.info(f"Uploading file {filepath} ({file_size} bytes) to session {session_id}")
sbx.files.write(filpath.name, file)
# Verify upload succeeded
if sbx.files.verify_file_upload(filpath.name, file_size):
filenames.append(filpath.name)
logger.debug(f"Successfully uploaded and verified {filpath.name}")
else:
logger.error(f"File upload verification failed for {filpath.name}")
raise RuntimeError(f"File upload verification failed for {filpath.name}")
except Exception as e:
logger.error(f"Failed to upload file {filepath} for session {session_id}: {str(e)}")
raise
else:
logger.info(f"No files to upload for session {session_id}")
# Initialize or continue session state
if is_continuing_session:
# Load existing session state
session_state = existing_session_state
# Validate and repair conversation history to prevent API errors
session_manager.validate_and_repair_conversation(session_state)
message_history = session_manager.get_conversation_history(session_state)
logger.info(f"Continuing session {session_id} with {len(message_history)} existing messages")
# Add new user input if provided
if user_input and user_input.strip():
# Check if this input was already added by comparing with the last message
last_message = message_history[-1] if message_history else None
should_add_input = True
if last_message and last_message.get("role") == "user":
# If the last message is from user and has the same content, don't add duplicate
if last_message.get("content") == user_input:
should_add_input = False
logger.debug(f"User input already present in session {session_id}")
if should_add_input:
session_manager.add_message(session_state, "user", user_input)
message_history = session_manager.get_conversation_history(session_state)
logger.info(f"Added new user input to existing session {session_id}")
# Show notification that we're continuing the conversation
continue_message = "π Continuing conversation with new input..."
continue_notification = create_progress_notification(continue_message)
yield continue_notification, message_history, save_dir
else:
# Create new session state
logger.info(f"Initializing new session {session_id}")
# Format files section
if files is None:
files_section = "- None"
else:
files_section = "- " + "\n- ".join(filenames)
logger.info(f"System prompt includes {len(filenames)} files: {filenames}")
# Format GPU information
gpu_info = gpu_type.upper() if gpu_type != "cpu" else "CPU Only"
if gpu_type in ["T4", "L4", "A100-40GB", "A100-80GB", "H100"]:
gpu_info = f"NVIDIA {gpu_type}"
# Format available packages based on hardware configuration
packages_list = sbx.available_packages
packages_section = "\n".join([f"- {package}" for package in packages_list])
# Format the complete system prompt with named placeholders
system_prompt = DEFAULT_SYSTEM_PROMPT.replace("{AVAILABLE_FILES}", files_section)
system_prompt = system_prompt.replace("{GPU_TYPE}", gpu_info)
system_prompt = system_prompt.replace("{CPU_CORES}", str(cpu_cores))
system_prompt = system_prompt.replace("{MEMORY_GB}", str(memory_gb))
system_prompt = system_prompt.replace("{TIMEOUT_SECONDS}", str(timeout_sec))
system_prompt = system_prompt.replace("{AVAILABLE_PACKAGES}", packages_section)
# Create session state with configuration
hardware_config = {
"gpu_type": gpu_type,
"cpu_cores": cpu_cores,
"memory_gb": memory_gb,
"timeout_sec": timeout_sec
}
api_config = {
"model_name": model_name or user_model_name or "unknown",
"provider_endpoint": os.environ.get("PROVIDER_API_ENDPOINT") or provider_api_endpoint,
"provider_type": "openai_compatible"
}
environment_config = {
"variables": env_vars_text or "",
"files_uploaded": filenames if filenames else []
}
# Create initial session state
session_state = session_manager.create_initial_state(
hardware_config, api_config, environment_config, system_prompt
)
# Add user input if provided
if user_input and user_input.strip():
session_manager.add_message(session_state, "user", user_input)
# Get conversation history
message_history = session_manager.get_conversation_history(session_state)
# Save initial state
session_manager.save_state(session_state)
logger.info(f"Created new session {session_id} with {len(message_history)} messages")
logger.debug(f"Session {session_id} ready with {len(message_history)} messages")
# Determine which tools to use based on web search toggle
from jupyter_agent import TOOLS
if enable_web_search:
# Check if Tavily API key is available
tavily_key = os.environ.get("TAVILY_API_KEY") or tavily_api_key
if tavily_key:
selected_tools = TOOLS # Use all tools (code + search)
logger.info(f"Web search enabled for session {session_id} - using all tools")
else:
selected_tools = TOOLS[:1] # Use only code execution tool
logger.warning(f"Web search enabled but no Tavily API key found for session {session_id} - using code tool only")
else:
selected_tools = TOOLS[:1] # Use only code execution tool
logger.info(f"Web search disabled for session {session_id} - using code tool only")
logger.info(f"Starting interactive notebook execution for session {session_id}")
# Import Phoenix session context if available
try:
from jupyter_agent import create_phoenix_session_context
phoenix_available = True
except ImportError:
phoenix_available = False
# Prepare session metadata for Phoenix tracing at the session level
if phoenix_available:
session_level_metadata = {
"agent_type": "eureka-agent",
"session_type": "jupyter_execution",
"gpu_type": gpu_type,
"cpu_cores": cpu_cores,
"memory_gb": memory_gb,
"timeout_sec": timeout_sec,
"web_search_enabled": enable_web_search,
"tools_available": len(selected_tools)
}
# Add API provider info if available
if model_name:
session_level_metadata["model"] = model_name
session_context = create_phoenix_session_context(
session_id=session_id,
user_id=None, # Could add user identification if available
metadata=session_level_metadata
)
else:
from contextlib import nullcontext
session_context = nullcontext()
# Wrap the entire execution in a Phoenix session context
with session_context:
logger.debug(f"Starting session-level Phoenix tracing for {session_id}")
try:
for notebook_html, notebook_data, messages in run_interactive_notebook_with_session_state(
client, model_name, session_manager, session_state, sbx, STOP_EVENTS[session_id], selected_tools
):
message_history = messages
logger.debug(f"Interactive notebook yield for session {session_id}")
# Update session state and yield with legacy notebook file for UI compatibility
session_manager.update_notebook_data(session_state, notebook_data)
session_manager.save_state(session_state)
# Create legacy notebook file for UI download compatibility
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
yield notebook_html, message_history, save_dir
except Exception as e:
logger.error(f"Error during interactive notebook execution for session {session_id}: {str(e)}")
# Save error state
session_manager.update_execution_state(session_state, is_running=False, last_execution_successful=False)
session_manager.save_state(session_state)
raise
# Final save and cleanup
try:
session_manager.update_execution_state(session_state, is_running=False)
session_manager.save_state(session_state)
logger.info(f"Final session state saved for session {session_id}")
# Create final legacy notebook file for UI
with open(save_dir, 'w', encoding='utf-8') as f:
json.dump(notebook_data, f, indent=2)
except Exception as e:
logger.error(f"Failed to save final session state for session {session_id}: {str(e)}")
raise
yield notebook_html, message_history, save_dir
logger.info(f"Completed execution for session {session_id}")
# Update legacy execution state for compatibility
if session_id in EXECUTION_STATES:
EXECUTION_STATES[session_id]["running"] = False
def clear(msg_state, request: gr.Request):
"""Clear notebook but keep session data (less destructive than shutdown)"""
session_id = request.session_hash
logger.info(f"Clearing notebook for session {session_id}")
# Stop any running execution
if session_id in STOP_EVENTS:
STOP_EVENTS[session_id].set()
# Clear execution states but keep session data
if session_id in EXECUTION_STATES:
EXECUTION_STATES[session_id]["running"] = False
EXECUTION_STATES[session_id]["paused"] = False
EXECUTION_STATES[session_id]["current_phase"] = "ready"
# Reset message state for UI
msg_state = []
logger.info(f"Reset notebook display for session {session_id}")
return init_notebook.render(), msg_state
def stop_execution(request: gr.Request):
"""Stop the current execution for this session"""
session_id = request.session_hash
logger.info(f"Stopping execution for session {session_id}")
if session_id in STOP_EVENTS and session_id in EXECUTION_STATES:
# Check if execution is actually running
if EXECUTION_STATES[session_id].get("running", False):
STOP_EVENTS[session_id].set()
logger.info(f"Stop signal sent for session {session_id}")
# Update execution state
EXECUTION_STATES[session_id]["running"] = False
EXECUTION_STATES[session_id]["paused"] = True
EXECUTION_STATES[session_id]["current_phase"] = "stopping"
# Also update session state if available
session_manager = SessionStateManager(session_id, TMP_DIR)
session_state = session_manager.load_state()
if session_state:
session_manager.update_execution_state(
session_state, is_running=False, is_paused=True, current_phase="stopping"
)
session_manager.save_state(session_state)
return "βΈοΈ Execution stopped - click Run to resume with new input"
else:
logger.info(f"No active execution to stop for session {session_id}")
return "βͺ No active execution to stop"
else:
logger.warning(f"No execution session found for {session_id}")
return "β No execution session found"
def shutdown_sandbox(request: gr.Request):
"""Shutdown the sandbox while preserving all session data and files"""
session_id = request.session_hash
logger.info(f"Shutting down sandbox for {session_id} (preserving all session data and files)")
try:
# 1. Stop any running execution first
if session_id in STOP_EVENTS:
STOP_EVENTS[session_id].set()
logger.info(f"Stopped execution for session {session_id}")
# 2. Shutdown Modal sandbox only
if session_id in SANDBOXES:
logger.info(f"Killing Modal sandbox for session {session_id}")
SANDBOXES[session_id].kill()
SANDBOXES.pop(session_id)
logger.info(f"Successfully shutdown sandbox for session {session_id}")
# 3. Log what's being preserved (but don't remove anything)
session_manager = SessionStateManager(session_id, TMP_DIR)
if session_manager.session_exists():
logger.info(f"Preserving session data for {session_id}")
# Load session state to show what's being preserved
session_state = session_manager.load_state()
if session_state:
# Log what we're preserving
stats = session_state.get("session_stats", {})
llm_interactions = len(session_state.get("llm_interactions", []))
tool_executions = len(session_state.get("tool_executions", []))
logger.info(f"Preserving session {session_id}: "
f"{stats.get('total_messages', 0)} messages, "
f"{llm_interactions} LLM interactions, "
f"{tool_executions} tool executions, "
f"{stats.get('total_code_executions', 0)} code runs")
# Log all preserved files
if session_manager.session_dir.exists():
try:
preserved_files = []
for file_path in session_manager.session_dir.iterdir():
if file_path.is_file():
preserved_files.append(file_path.name)
if preserved_files:
logger.info(f"Preserving {len(preserved_files)} files in {session_id}: {preserved_files}")
else:
logger.info(f"No files found in session {session_id}")
except OSError as e:
logger.warning(f"Could not check session directory {session_id}: {e}")
# 4. Keep execution tracking data (don't clear anything)
logger.info(f"Preserving execution state and stop events for {session_id}")
logger.info(f"Sandbox shutdown completed for session {session_id} (all data preserved)")
return gr.Button(visible=False)
except Exception as e:
logger.error(f"Error during shutdown for session {session_id}: {str(e)}")
return f"β Error during shutdown: {str(e)}", gr.Button(visible=True)
# continue_execution function removed - functionality integrated into execute_jupyter_agent
def get_execution_status(request: gr.Request):
"""Get the current execution status for UI updates"""
session_id = request.session_hash
if session_id not in EXECUTION_STATES:
return "βͺ Ready"
state = EXECUTION_STATES[session_id]
if state["running"]:
if session_id in STOP_EVENTS and STOP_EVENTS[session_id].is_set():
return "βΈοΈ Stopping..."
else:
# Check if we have more detailed phase information
phase = state.get("current_phase", "running")
if phase == "generating":
return "π’ Generating response..."
elif phase == "executing_code":
return "π’ Executing code..."
elif phase == "searching":
return "π’ Searching web..."
else:
return "π’ Running"
elif state.get("paused", False):
return "βΈοΈ Paused - Click Run to continue"
else:
return "βͺ Ready"
def is_sandbox_active(request: gr.Request):
"""Check if sandbox is active for the current session"""
session_id = request.session_hash
return session_id in SANDBOXES
def get_sandbox_status_and_visibility(request: gr.Request):
"""Get sandbox status message and button visibility"""
session_id = request.session_hash
if session_id in SANDBOXES:
return "π’ Sandbox active", gr.Button(visible=True)
else:
return "βͺ No sandbox active", gr.Button(visible=False)
def update_sandbox_button_visibility(request: gr.Request):
"""Update only the button visibility based on sandbox status"""
session_id = request.session_hash
return gr.Button(visible=session_id in SANDBOXES)
def reset_ui_after_shutdown(request: gr.Request):
"""Reset UI components after complete shutdown"""
session_id = request.session_hash
# Check if session is truly cleared
is_cleared = (session_id not in SANDBOXES and
session_id not in EXECUTION_STATES and
session_id not in STOP_EVENTS)
if is_cleared:
# Return reset state for all UI components
return (
init_notebook.render(), # Reset notebook display
[], # Clear message state
"βͺ Ready", # Reset status
"βͺ No sandbox active", # Reset sandbox status
gr.Button(visible=False) # Hide shutdown button
)
else:
# Return current state if not fully cleared
status = get_execution_status(request)
sandbox_status, button_vis = get_sandbox_status_and_visibility(request)
return (
init_notebook.render(), # Still reset notebook display
[], # Still clear message state
status,
sandbox_status,
button_vis
)
def reconstruct_message_history_from_notebook(notebook_data):
"""Reconstruct message history from notebook cells"""
message_history = []
cells = notebook_data.get('cells', [])
system_prompt = None
current_conversation = []
for cell in cells:
cell_type = cell.get('cell_type', '')
if cell_type == 'markdown':
content = cell.get('source', '')
if isinstance(content, list):
content = ''.join(content)
# Check if this is a system message
if 'System' in content and 'IMPORTANT EXECUTION GUIDELINES' in content:
# Extract the system prompt content
system_content = content
# Clean up the HTML and extract the actual content
# Remove HTML tags and extract the text content
clean_content = re.sub(r'<[^>]+>', '', system_content)
clean_content = re.sub(r'\n+', '\n', clean_content).strip()
system_prompt = clean_content
elif 'User' in content and not any(word in content for word in ['Assistant', 'System']):
# This is a user message
# Extract the user content after the User header
user_content = content.split('User')[1] if 'User' in content else content
# Clean up HTML and formatting
user_content = re.sub(r'<[^>]+>', '', user_content)
user_content = re.sub(r'-{3,}', '', user_content)
user_content = user_content.strip()
if user_content:
current_conversation.append({
"role": "user",
"content": user_content
})
elif 'Assistant' in content:
# This is an assistant message
assistant_content = content.split('Assistant')[1] if 'Assistant' in content else content
# Clean up HTML and formatting
assistant_content = re.sub(r'<[^>]+>', '', assistant_content)
assistant_content = re.sub(r'-{3,}', '', assistant_content)
assistant_content = assistant_content.strip()
if assistant_content:
current_conversation.append({
"role": "assistant",
"content": assistant_content
})
# Build the final message history
if system_prompt:
message_history.append({
"role": "system",
"content": system_prompt
})
# Add the conversation messages
message_history.extend(current_conversation)
return message_history
def load_previous_notebook(notebook_choice, request: gr.Request):
"""Load a previous notebook with complete session configuration (dev only)"""
if not is_dev_environment():
return (init_notebook.render(), [], "Load previous notebooks is only available in development mode",
None, None, None, None, None, "", "", "", "", "", "", "", False)
if not notebook_choice or notebook_choice == "None":
return (init_notebook.render(), [], "Please select a notebook to load",
None, None, None, None, None, "", "", "", "", "", "", "", False)
try:
# Parse the notebook choice to get the session ID
session_id = notebook_choice.split(" ")[0]
notebook_path = Path(TMP_DIR) / session_id / "jupyter-agent.ipynb"
if not notebook_path.exists():
return (init_notebook.render(), [], f"Notebook file not found: {notebook_path}",
None, None, None, None, None, "", "", "", "", "", "", "", False)
# Load the notebook
with open(notebook_path, 'r') as f:
notebook_data = json.load(f)
# Load session state
temp_session_manager = SessionStateManager(session_id, TMP_DIR)
session_state = temp_session_manager.load_state()
session_config = None # For backward compatibility
# Extract config from session state for UI restoration
if session_state:
session_config = {
"hardware": session_state.get("hardware_config", {}),
"environment_vars": session_state.get("environment", {}).get("variables", ""),
"api_keys": {
"model_name": session_state.get("api_config", {}).get("model_name", "")
}
}
# Create a new JupyterNotebook instance with the loaded data
loaded_notebook = JupyterNotebook()
loaded_notebook.data = notebook_data
# Reconstruct message history from notebook cells
message_history = reconstruct_message_history_from_notebook(notebook_data)
# Store the loaded notebook info in session for continue functionality
session_id_hash = request.session_hash
if session_id_hash not in EXECUTION_STATES:
EXECUTION_STATES[session_id_hash] = {}
EXECUTION_STATES[session_id_hash]["loaded_notebook"] = {
"notebook_data": notebook_data,
"message_history": message_history,
"original_session": session_id,
"session_config": session_config
}
logger.info(f"Successfully loaded notebook from {notebook_path}")
logger.info(f"Reconstructed message history with {len(message_history)} messages")
# Prepare configuration values to restore UI state
config_loaded = ""
gpu_type = None
cpu_cores = None
memory_gb = None
timeout_sec = None
env_vars = ""
modal_token_id = ""
modal_token_secret = ""
hf_token = ""
provider_api_key = ""
provider_api_endpoint = ""
model_name = ""
if session_config:
hardware = session_config.get("hardware", {})
gpu_type = hardware.get("gpu_type")
cpu_cores = hardware.get("cpu_cores")
memory_gb = hardware.get("memory_gb")
timeout_sec = hardware.get("timeout_sec")
env_vars = session_config.get("environment_vars", "")
api_keys = session_config.get("api_keys", {})
modal_token_id = api_keys.get("modal_token_id", "")
modal_token_secret = api_keys.get("modal_token_secret", "")
hf_token = api_keys.get("hf_token", "")
provider_api_key = api_keys.get("provider_api_key", "")
provider_api_endpoint = api_keys.get("provider_api_endpoint", "")
model_name = api_keys.get("model_name", "")
config_loaded = f"β
Configuration restored: GPU={gpu_type}, CPU={cpu_cores}, Memory={memory_gb}GB, Timeout={timeout_sec}s"
success_message = f"β
Loaded notebook: {session_id} ({len(notebook_data.get('cells', []))} cells, {len(message_history)} messages)"
if config_loaded:
success_message += f"\n{config_loaded}"
return (loaded_notebook.render(), message_history, success_message,
gpu_type, cpu_cores, memory_gb, timeout_sec, env_vars,
modal_token_id, modal_token_secret, hf_token, provider_api_key, provider_api_endpoint, model_name,
"", False) # Default empty tavily_api_key and False for enable_web_search
except Exception as e:
logger.error(f"Failed to load notebook {notebook_choice}: {str(e)}")
error_message = f"β Failed to load notebook: {str(e)}"
return (init_notebook.render(), [], error_message,
None, None, None, None, None, "", "", "", "", "", "", "", False)
def get_notebook_options():
"""Get options for notebook dropdown (dev only)"""
if not is_dev_environment():
return ["Load previous notebooks is only available in development mode"]
notebooks = get_previous_notebooks()
if not notebooks:
return ["No previous notebooks found"]
options = ["None"] + [nb['display_name'] for nb in notebooks[:20]] # Limit to 20 most recent
return options
def refresh_notebook_options():
"""Refresh the notebook options dropdown"""
return gr.Dropdown(choices=get_notebook_options(), value="None")
# Legacy session configuration functions removed - replaced by SessionStateManager
# All session data is now stored in a single comprehensive session_state.json file
css = """
#component-0 {
height: 100vh;
overflow-y: auto;
padding: 20px;
}
.gradio-container {
height: 100vh !important;
}
.contain {
height: 100vh !important;
}
/* Button states for execution control */
.button-executing {
opacity: 0.6 !important;
pointer-events: none !important;
cursor: not-allowed !important;
}
.button-executing::after {
content: " β³";
}
.status-running {
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
"""
# Create the interface
with gr.Blocks() as demo:
msg_state = gr.State(value=[])
# Environment info display
env_info = gr.Markdown(f"""
**Environment**: {get_environment().upper()} | **Features**: {"Development features enabled" if is_dev_environment() else "Production mode"}
""")
html_output = gr.HTML(value=JupyterNotebook().render())
user_input = gr.Textbox(
# value="train a 5 neuron neural network to classify the iris dataset",
value="can you finetune llama 3.2 1b on tiny stories dataset and using unsloth",
lines=3,
label="Agent task"
)
with gr.Accordion("Upload files β¬ | Download notebookβ¬", open=False):
files = gr.File(label="Upload files to use", file_count="multiple")
file = gr.File(TMP_DIR+"jupyter-agent.ipynb", label="Download Jupyter Notebook")
with gr.Row():
# Web Search Configuration
with gr.Accordion("π Web Search Settings", open=False):
with gr.Row():
enable_web_search = gr.Checkbox(
label="Enable Web Search",
value=bool(os.environ.get("TAVILY_API_KEY")), # Default to True if API key is available
info="Allow the agent to search the web for current information and documentation"
)
# Show web search status with better formatting
tavily_status = "β
Available" if os.environ.get("TAVILY_API_KEY") else "β API Key Required"
gr.Markdown(f"**Status:** {tavily_status}")
gr.Markdown("""
**Web Search Features:**
- π Search for current tutorials, documentation, and best practices
- π Find solutions to error messages and debugging help
- π Access up-to-date library documentation and examples
- π‘ Get recent examples and code snippets from the web
β οΈ **Note**: Web search requires a Tavily API key. Get one free at [tavily.com](https://tavily.com)
""")
# Previous notebooks section (dev only)
if is_dev_environment():
with gr.Accordion("π Load Previous Notebook (Dev Only)", open=False):
notebook_dropdown = gr.Dropdown(
choices=get_notebook_options(),
value="None",
label="Select Previous Notebook",
info="Load a previously created notebook session"
)
with gr.Row():
load_notebook_btn = gr.Button("π Load Selected", variant="secondary")
refresh_notebooks_btn = gr.Button("π Refresh List", variant="secondary")
load_status = gr.Textbox(
label="Load Status",
interactive=False,
visible=False
)
# Check for missing API keys and show input fields conditionally
missing_keys = get_missing_api_keys()
# API Key Configuration (shown only if keys are missing)
if missing_keys:
with gr.Accordion("π Required API Keys (Missing from .env)", open=True):
gr.Markdown("""
**β οΈ Some required API keys are missing from your .env file.**
Please provide them below to use the application:
""")
api_key_components = {}
if "MODAL_TOKEN_ID" in missing_keys:
api_key_components["modal_token_id"] = gr.Textbox(
label="Modal Token ID",
placeholder="ak-...",
info="Modal Token ID for sandbox access",
type="password"
)
else:
api_key_components["modal_token_id"] = gr.Textbox(visible=False)
if "MODAL_TOKEN_SECRET" in missing_keys:
api_key_components["modal_token_secret"] = gr.Textbox(
label="Modal Token Secret",
placeholder="as-...",
info="Modal Token Secret for sandbox access",
type="password"
)
else:
api_key_components["modal_token_secret"] = gr.Textbox(visible=False)
if "HF_TOKEN" in missing_keys:
api_key_components["hf_token"] = gr.Textbox(
label="Hugging Face Token (Optional)",
placeholder="hf_...",
info="Hugging Face Token for model access",
type="password"
)
else:
api_key_components["hf_token"] = gr.Textbox(visible=False)
if "PROVIDER_API_KEY" in missing_keys:
api_key_components["provider_api_key"] = gr.Textbox(
label="AI Provider API Key",
placeholder="sk-, gsk_, or csk-...",
info="API Key for your AI provider (Anthropic, OpenAI, Cerebras, etc.)",
type="password"
)
else:
api_key_components["provider_api_key"] = gr.Textbox(visible=False)
if "PROVIDER_API_ENDPOINT" in missing_keys:
api_key_components["provider_api_endpoint"] = gr.Textbox(
label="AI Provider API Endpoint",
placeholder="https://api.anthropic.com/v1/",
info="API endpoint for your AI provider"
)
else:
api_key_components["provider_api_endpoint"] = gr.Textbox(visible=False)
if "MODEL_NAME" in missing_keys:
api_key_components["model_name"] = gr.Textbox(
label="Model Name",
placeholder="claude-sonnet-4-20250514",
info="Name of the model to use"
)
else:
api_key_components["model_name"] = gr.Textbox(visible=False)
if "TAVILY_API_KEY" in missing_keys:
api_key_components["tavily_api_key"] = gr.Textbox(
label="Tavily API Key (Optional)",
placeholder="tvly-...",
info="Tavily API Key for web search functionality",
type="password"
)
else:
api_key_components["tavily_api_key"] = gr.Textbox(visible=False)
else:
# Create hidden components when no keys are missing
api_key_components = {
"modal_token_id": gr.Textbox(visible=False),
"modal_token_secret": gr.Textbox(visible=False),
"hf_token": gr.Textbox(visible=False),
"provider_api_key": gr.Textbox(visible=False),
"provider_api_endpoint": gr.Textbox(visible=False),
"model_name": gr.Textbox(visible=False),
"tavily_api_key": gr.Textbox(visible=False)
}
with gr.Accordion("Hardware Configuration βοΈ", open=False):
with gr.Row():
with gr.Column():
env_vars = gr.Textbox(
label="Environment Variables",
placeholder="Enter environment variables (one per line):\nAPI_KEY=your_key_here\nDATA_PATH=/path/to/data\nDEBUG=true",
lines=5,
info="Add custom environment variables for the sandbox. Format: KEY=value (one per line)"
)
env_info = gr.Markdown("""
**Environment Variables Info:**
- Variables will be available in the sandbox environment
- Use KEY=value format, one per line
- Common examples: API keys, data paths, configuration flags
- Variables are session-specific and not persisted between sessions
β οΈ **Security**: Avoid sensitive credentials in shared environments
""")
with gr.Column():
with gr.Row():
gpu_type = gr.Dropdown(
choices=GPU_OPTIONS,
value="cpu",
label="GPU Type",
info="Select hardware acceleration"
)
cpu_cores = gr.Slider(
minimum=0.25,
maximum=16,
value=2.0,
step=0.25,
label="CPU Cores",
info="Number of CPU cores"
)
with gr.Row():
memory_gb = gr.Slider(
minimum=0.5,
maximum=64,
value=8.0,
step=0.5,
label="Memory (GB)",
info="RAM allocation"
)
timeout_sec = gr.Slider(
minimum=60,
maximum=1800,
value=300,
step=60,
label="Timeout (seconds)",
info="Maximum execution time"
)
hardware_info = gr.Markdown("""
**Hardware Options:**
- **CPU Only**: Free, good for basic tasks
- **T4**: Low-cost GPU, good for small models
- **L4**: Mid-range GPU, better performance
- **A100 40/80GB**: High-end GPU for large models
- **H100**: Latest flagship GPU for maximum performance
β οΈ **Note**: GPU instances cost more. Choose based on your workload.
""")
# with gr.Accordion("Environment Variables π§", open=False):
with gr.Row():
generate_btn = gr.Button("Run!", variant="primary")
stop_btn = gr.Button("βΈοΈ Stop", variant="secondary")
# continue_btn removed - Run button handles continuation automatically
clear_btn = gr.Button("Clear Notebook", variant="stop")
shutdown_btn = gr.Button("π΄ Shutdown Sandbox", variant="stop", visible=False)
# Status display
status_display = gr.Textbox(
value="βͺ Ready",
label="Execution Status",
interactive=False,
max_lines=1
)
generate_btn.click(
fn=execute_jupyter_agent,
inputs=[
user_input, files, msg_state, gpu_type, cpu_cores, memory_gb, timeout_sec, env_vars,
api_key_components["modal_token_id"], api_key_components["modal_token_secret"],
api_key_components["hf_token"], api_key_components["provider_api_key"],
api_key_components["provider_api_endpoint"], api_key_components["model_name"],
api_key_components["tavily_api_key"], enable_web_search
],
outputs=[html_output, msg_state, file],
show_progress="hidden",
)
stop_btn.click(
fn=stop_execution,
outputs=[status_display],
show_progress="hidden",
)
# continue_btn.click handler removed - Run button handles continuation automatically
clear_btn.click(fn=clear, inputs=[msg_state], outputs=[html_output, msg_state])
shutdown_btn.click(
fn=shutdown_sandbox,
outputs=[shutdown_btn],
show_progress="hidden",
)
# Add event handlers for notebook loading (dev only)
if is_dev_environment():
load_notebook_btn.click(
fn=load_previous_notebook,
inputs=[notebook_dropdown],
outputs=[
html_output, msg_state, load_status,
gpu_type, cpu_cores, memory_gb, timeout_sec, env_vars,
api_key_components["modal_token_id"], api_key_components["modal_token_secret"],
api_key_components["hf_token"], api_key_components["provider_api_key"],
api_key_components["provider_api_endpoint"], api_key_components["model_name"],
api_key_components["tavily_api_key"], enable_web_search
],
show_progress="hidden"
)
refresh_notebooks_btn.click(
fn=refresh_notebook_options,
outputs=[notebook_dropdown],
show_progress="hidden"
)
# Show/hide load status based on selection
notebook_dropdown.change(
fn=lambda choice: gr.Textbox(visible=choice != "None"),
inputs=[notebook_dropdown],
outputs=[load_status]
)
# Periodic status update using timer
status_timer = gr.Timer(2.0) # Update every 2 seconds
status_timer.tick(
fn=get_execution_status,
outputs=[status_display],
show_progress="hidden"
)
# Update button visibility periodically
button_timer = gr.Timer(3.0) # Check every 3 seconds
button_timer.tick(
fn=update_sandbox_button_visibility,
outputs=[shutdown_btn],
show_progress="hidden"
)
demo.load(
fn=None,
inputs=None,
outputs=None,
js=""" () => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
}
// Add execution state management functions
window.setExecutionState = function(isExecuting) {
// Find Run button by text content since variant attribute might not be reliable
const buttons = document.querySelectorAll('button');
let runButton = null;
let stopButton = null;
buttons.forEach(button => {
const text = button.textContent.trim().toLowerCase();
if (text.includes('run') && !text.includes('stop')) {
runButton = button;
} else if (text.includes('stop') || text.includes('βΈοΈ')) {
stopButton = button;
}
});
if (runButton) {
if (isExecuting) {
runButton.classList.add('button-executing');
runButton.disabled = true;
runButton.style.opacity = '0.6';
runButton.style.cursor = 'not-allowed';
runButton.style.pointerEvents = 'none';
if (runButton.textContent.indexOf('β³') === -1) {
runButton.textContent = runButton.textContent.replace('!', '! β³');
}
} else {
runButton.classList.remove('button-executing');
runButton.disabled = false;
runButton.style.opacity = '1';
runButton.style.cursor = 'pointer';
runButton.style.pointerEvents = 'auto';
runButton.textContent = runButton.textContent.replace(' β³', '');
}
}
// Also update stop button visibility/state
if (stopButton) {
stopButton.style.display = isExecuting ? 'block' : 'inline-block';
}
};
// Monitor for status changes and update button states
window.monitorExecutionStatus = function() {
// Try multiple ways to find the status element
let statusElement = document.querySelector('input[label*="Execution Status"], input[label*="Status"], textarea[label*="Status"]');
if (!statusElement) {
// Fallback: look for any input that might contain status
const allInputs = document.querySelectorAll('input, textarea');
allInputs.forEach(input => {
if (input.value && (input.value.includes('π’') || input.value.includes('βͺ') || input.value.includes('βΈοΈ'))) {
statusElement = input;
}
});
}
if (statusElement) {
const status = statusElement.value || '';
const isRunning = status.includes('π’') || status.includes('Running') || status.includes('Generating') || status.includes('Executing');
const isReady = status.includes('βͺ') || status.includes('Ready');
window.setExecutionState(isRunning);
// Add visual indicator to status element
if (isRunning) {
statusElement.style.background = '#e3f2fd';
statusElement.style.borderColor = '#2196f3';
} else if (isReady) {
statusElement.style.background = '#f5f5f5';
statusElement.style.borderColor = '#ccc';
} else {
statusElement.style.background = '#fff3e0';
statusElement.style.borderColor = '#ff9800';
}
}
};
// Set up mutation observer to watch for status changes
const observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.type === 'childList' || mutation.type === 'attributes') {
setTimeout(window.monitorExecutionStatus, 100);
}
});
});
// Start observing
observer.observe(document.body, {
childList: true,
subtree: true,
attributes: true
});
}
"""
)
logger.info("Starting Gradio application")
demo.launch(ssr_mode=False)
|