Spaces:
Running
Running
File size: 65,074 Bytes
744e5e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 |
from jupyter_handler import JupyterNotebook
import json
import logging
import os
import datetime
from pathlib import Path
from typing import Dict, List, Any, Optional
from tavily import TavilyClient
# Phoenix tracing imports
try:
from openinference.instrumentation import using_session
PHOENIX_AVAILABLE = True
print("Phoenix session tracking imports successful")
except ImportError:
PHOENIX_AVAILABLE = False
print("Phoenix session tracking not available - missing openinference packages")
# Configure logging for utils module
logger = logging.getLogger(__name__)
# Initialize Tavily client
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
tavily_client = TavilyClient(api_key=TAVILY_API_KEY) if TAVILY_API_KEY else None
TOOLS = [
{
"type": "function",
"function": {
"name": "add_and_execute_jupyter_code_cell",
"description": "A Python code execution environment that runs code in a Jupyter notebook interface. This is stateful - variables and imports persist between executions.",
"parameters": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "The Python code to execute."
}
},
"required": ["code"]
}
}
},
{
"type": "function",
"function": {
"name": "edit_and_execute_current_cell",
"description": "Edit the current/last code cell and execute the new code. Use this to fix errors or modify the previous code instead of creating a new cell.",
"parameters": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "The updated Python code to replace the current cell with and execute."
}
},
"required": ["code"]
}
}
},
{
"type": "function",
"function": {
"name": "execute_shell_command",
"description": "Execute shell/system commands like ls, cat, mkdir, etc. This runs independently of Python and provides terminal-style output.",
"parameters": {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "The shell command to execute (e.g., 'ls -la', 'cat file.txt', 'mkdir new_folder')."
}
},
"required": ["command"]
}
}
},
{
"type": "function",
"function": {
"name": "web_search",
"description": "Search the web for current information, documentation, tutorials, and solutions to coding problems. Use this to get context before starting tasks or when encountering errors.",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search query (max 400 characters). Be specific and include relevant keywords."
}
},
"required": ["query"]
}
}
},
]
# TOOLS = TOOLS[:1]
MAX_TURNS = 20
def create_phoenix_session_context(session_id: str, user_id: str = None, metadata: Dict = None):
"""
Create a Phoenix session context for tracing LLM interactions.
Args:
session_id: Unique identifier for the session
user_id: Optional user identifier
metadata: Additional metadata to include in traces
Returns:
Context manager for Phoenix session tracking
"""
if not PHOENIX_AVAILABLE:
# Return a no-op context manager if Phoenix is not available
from contextlib import nullcontext
return nullcontext()
try:
# Use using_session for proper session grouping in Phoenix
# This ensures all LLM calls within this context are grouped under the same session
logger.debug(f"Creating Phoenix session context for session_id: {session_id}")
return using_session(session_id)
except Exception as e:
logger.warning(f"Failed to create Phoenix session context for {session_id}: {e}")
# Fallback to no-op context if Phoenix session creation fails
from contextlib import nullcontext
return nullcontext()
class SessionStateManager:
"""Manages comprehensive session state in a single JSON file"""
def __init__(self, session_id: str, base_dir: str = './temp/'):
self.session_id = session_id
self.base_dir = Path(base_dir)
self.session_dir = self.base_dir / session_id
self.state_file = self.session_dir / 'session_state.json'
self.session_dir.mkdir(parents=True, exist_ok=True)
logger.info(f"SessionStateManager initialized for {session_id}")
def create_initial_state(self, hardware_config: Dict, api_config: Dict,
environment: Dict, system_prompt: str) -> Dict:
"""Create initial session state structure"""
timestamp = datetime.datetime.now(datetime.timezone.utc).isoformat()
initial_state = {
"session_id": self.session_id,
"created_at": timestamp,
"last_updated": timestamp,
"version": "1.0",
"hardware_config": hardware_config,
"api_config": api_config,
"environment": environment,
"conversation_history": [
{
"role": "system",
"content": system_prompt,
"timestamp": timestamp,
"metadata": {"type": "system_initialization"}
}
],
"llm_interactions": [], # Complete API call logs
"tool_executions": [], # All tool calls and results
"notebook_data": {
"cells": [],
"metadata": {
"kernel_info": {"name": "python3"},
"language_info": {"name": "python", "version": "3.12"},
},
"nbformat": 4,
"nbformat_minor": 0
},
"execution_state": {
"current_turn": 0,
"max_turns": MAX_TURNS,
"is_running": False,
"is_paused": False,
"last_execution_successful": None,
"sandbox_active": False,
"sandbox_info": None
},
"session_stats": {
"total_messages": 1,
"total_code_executions": 0,
"total_searches": 0,
"total_errors": 0,
"session_duration_seconds": 0
}
}
logger.info("Created initial session state for %s", self.session_id)
return initial_state
def load_state(self) -> Optional[Dict]:
"""Load session state from file with improved error handling"""
if not self.state_file.exists():
logger.info(f"No existing session state found for {self.session_id}")
return None
try:
with open(self.state_file, 'r', encoding='utf-8') as f:
state = json.load(f)
logger.info(f"Loaded session state for {self.session_id} with {len(state.get('conversation_history', []))} messages")
return state
except json.JSONDecodeError as e:
logger.error(f"JSON corruption in session state for {self.session_id}: {str(e)}")
logger.info(f"Creating backup of corrupted file: {self.state_file}.corrupted")
try:
import shutil
shutil.copy2(self.state_file, str(self.state_file) + ".corrupted")
logger.info(f"Backup created successfully")
except Exception as backup_error:
logger.warning(f"Failed to create backup: {backup_error}")
return None
except Exception as e:
logger.error(f"Failed to load session state for {self.session_id}: {str(e)}")
return None
def save_state(self, state: Dict) -> bool:
"""Save session state to file with improved error handling"""
try:
# Update last_updated timestamp
state["last_updated"] = datetime.datetime.now(datetime.timezone.utc).isoformat()
# Update session stats
if "session_stats" not in state:
state["session_stats"] = {}
created_at = datetime.datetime.fromisoformat(state["created_at"])
current_time = datetime.datetime.now(datetime.timezone.utc)
state["session_stats"]["session_duration_seconds"] = int((current_time - created_at).total_seconds())
state["session_stats"]["total_messages"] = len(state.get("conversation_history", []))
# Validate JSON serializability before writing
try:
json.dumps(state, ensure_ascii=False)
except (TypeError, ValueError) as e:
logger.error(f"State contains non-serializable data: {e}")
logger.info("Attempting to clean non-serializable data...")
state = self._clean_non_serializable_data(state)
# Write to temporary file first, then rename for atomic operation
temp_file = self.state_file.with_suffix('.tmp')
with open(temp_file, 'w', encoding='utf-8') as f:
json.dump(state, f, indent=2, ensure_ascii=False)
# Atomic rename
temp_file.replace(self.state_file)
logger.debug(f"Saved session state for {self.session_id} ({len(json.dumps(state))} characters)")
return True
except Exception as e:
logger.error(f"Failed to save session state for {self.session_id}: {str(e)}")
# Clean up temp file if it exists
temp_file = self.state_file.with_suffix('.tmp')
if temp_file.exists():
try:
temp_file.unlink()
except Exception:
pass
return False
def _clean_non_serializable_data(self, obj):
"""Recursively clean non-serializable data from objects"""
if isinstance(obj, dict):
cleaned = {}
for key, value in obj.items():
try:
json.dumps(value)
cleaned[key] = self._clean_non_serializable_data(value)
except (TypeError, ValueError):
logger.warning(f"Removing non-serializable field: {key}")
cleaned[key] = f"<non-serializable: {type(value).__name__}>"
return cleaned
elif isinstance(obj, list):
cleaned = []
for item in obj:
try:
json.dumps(item)
cleaned.append(self._clean_non_serializable_data(item))
except (TypeError, ValueError):
cleaned.append(f"<non-serializable: {type(item).__name__}>")
return cleaned
else:
return obj
def log_llm_interaction(self, state: Dict, request_data: Dict, response_data: Dict,
model: str, turn: int) -> None:
"""Log complete LLM API interaction"""
timestamp = datetime.datetime.now(datetime.timezone.utc).isoformat()
interaction = {
"timestamp": timestamp,
"turn": turn,
"model": model,
"request": {
"messages_count": len(request_data.get("messages", [])),
"tools_count": len(request_data.get("tools", [])),
"model": request_data.get("model"),
"tool_choice": request_data.get("tool_choice")
},
"response": {
"content": response_data.get("choices", [{}])[0].get("message", {}).get("content"),
"tool_calls": response_data.get("choices", [{}])[0].get("message", {}).get("tool_calls"),
"finish_reason": response_data.get("choices", [{}])[0].get("finish_reason"),
"usage": response_data.get("usage")
}
}
if "llm_interactions" not in state:
state["llm_interactions"] = []
state["llm_interactions"].append(interaction)
# Log Phoenix session information for easy debugging
logger.debug(f"Logged LLM interaction for turn {turn} in session {self.session_id}")
logger.debug(f"Phoenix session tracking: session_id={self.session_id}, turn={turn}, model={model}")
# Log usage information if available for monitoring
usage = response_data.get("usage")
if usage:
logger.info(f"Session {self.session_id} turn {turn}: "
f"prompt_tokens={usage.get('prompt_tokens', 0)}, "
f"completion_tokens={usage.get('completion_tokens', 0)}, "
f"total_tokens={usage.get('total_tokens', 0)}")
def log_tool_execution(self, state: Dict, tool_call_id: str, tool_name: str,
tool_args: Dict, result: str, execution_data: Any = None) -> None:
"""Log tool execution with full details"""
timestamp = datetime.datetime.now(datetime.timezone.utc).isoformat()
# Safely serialize execution_data to prevent JSON corruption
safe_execution_data = None
if execution_data is not None:
try:
# Convert execution_data to a safe, serializable format
if hasattr(execution_data, '__dict__'):
safe_execution_data = {
"type": type(execution_data).__name__,
"error": str(execution_data.error) if hasattr(execution_data, 'error') and execution_data.error else None,
"has_results": hasattr(execution_data, 'results') and bool(execution_data.results),
"has_stdout": hasattr(execution_data, 'logs') and hasattr(execution_data.logs, 'stdout') and bool(execution_data.logs.stdout),
"has_stderr": hasattr(execution_data, 'logs') and hasattr(execution_data.logs, 'stderr') and bool(execution_data.logs.stderr)
}
else:
# For simple types, convert to string safely
safe_execution_data = str(execution_data)[:200] # Limit length
except Exception as e:
logger.warning(f"Failed to serialize execution_data for {tool_call_id}: {e}")
safe_execution_data = {"serialization_error": str(e)}
tool_execution = {
"timestamp": timestamp,
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"arguments": tool_args,
"result_summary": result[:500] + "..." if len(result) > 500 else result,
"result_length": len(result),
"execution_data": safe_execution_data,
"success": execution_data is None or (hasattr(execution_data, 'error') and execution_data.error is None) if execution_data else True
}
if "tool_executions" not in state:
state["tool_executions"] = []
state["tool_executions"].append(tool_execution)
# Update stats
if tool_name == "add_and_execute_jupyter_code_cell":
state["session_stats"]["total_code_executions"] = state["session_stats"].get("total_code_executions", 0) + 1
elif tool_name == "web_search":
state["session_stats"]["total_searches"] = state["session_stats"].get("total_searches", 0) + 1
if not tool_execution["success"]:
state["session_stats"]["total_errors"] = state["session_stats"].get("total_errors", 0) + 1
logger.debug(f"Logged tool execution {tool_name} ({tool_call_id}) in session {self.session_id}")
def add_message(self, state: Dict, role: str, content: str,
tool_calls: List = None, tool_call_id: str = None,
raw_execution: Any = None, metadata: Dict = None) -> None:
"""Add message to conversation history with full context"""
timestamp = datetime.datetime.now(datetime.timezone.utc).isoformat()
message = {
"role": role,
"content": content,
"timestamp": timestamp
}
if tool_calls:
message["tool_calls"] = tool_calls
if tool_call_id:
message["tool_call_id"] = tool_call_id
if raw_execution:
message["raw_execution"] = raw_execution
if metadata:
message["metadata"] = metadata
state["conversation_history"].append(message)
logger.debug(f"Added {role} message to session {self.session_id} conversation history")
def update_execution_state(self, state: Dict, **kwargs) -> None:
"""Update execution state fields"""
for key, value in kwargs.items():
if key in state["execution_state"]:
state["execution_state"][key] = value
logger.debug(f"Updated execution state {key}={value} for session {self.session_id}")
# Try to sync with global EXECUTION_STATES for UI consistency (if available)
try:
import sys
if 'app' in sys.modules:
execution_states = getattr(sys.modules['app'], 'EXECUTION_STATES', None)
if execution_states and self.session_id in execution_states:
for key, value in kwargs.items():
execution_states[self.session_id][key] = value
except (ImportError, AttributeError):
pass # Ignore if we can't sync with global state
def update_notebook_data(self, state: Dict, notebook_data: Dict) -> None:
"""Update notebook data in session state"""
state["notebook_data"] = notebook_data
logger.debug(f"Updated notebook data for session {self.session_id} ({len(notebook_data.get('cells', []))} cells)")
def get_conversation_history(self, state: Dict) -> List[Dict]:
"""Get conversation history suitable for LLM API calls"""
return state.get("conversation_history", [])
def validate_and_repair_conversation(self, state: Dict) -> None:
"""Validate and repair conversation history to ensure tool calls have responses"""
conversation = state.get("conversation_history", [])
if not conversation:
return
pending_tool_calls = set()
valid_messages = []
for message in conversation:
if message.get("role") == "assistant" and message.get("tool_calls"):
# Track tool calls
for tool_call in message["tool_calls"]:
pending_tool_calls.add(tool_call["id"])
valid_messages.append(message)
elif message.get("role") == "tool" and message.get("tool_call_id"):
# Remove from pending when we find a response
pending_tool_calls.discard(message["tool_call_id"])
valid_messages.append(message)
else:
# Regular message (system, user, assistant without tool calls)
valid_messages.append(message)
# If there are incomplete tool calls, remove the assistant messages that created them
if pending_tool_calls:
logger.warning(f"Found incomplete tool calls in conversation: {pending_tool_calls}")
logger.warning("Removing incomplete assistant messages to repair conversation")
repaired_messages = []
for message in valid_messages:
if (message.get("role") == "assistant" and
message.get("tool_calls") and
any(tc["id"] in pending_tool_calls for tc in message["tool_calls"])):
logger.debug("Removing assistant message with incomplete tool calls")
continue
repaired_messages.append(message)
# Update conversation history
state["conversation_history"] = repaired_messages
logger.info(f"Repaired conversation: {len(conversation)} -> {len(repaired_messages)} messages")
# Save the repaired state
self.save_state(state)
def session_exists(self) -> bool:
"""Check if session state file exists"""
return self.state_file.exists()
def get_session_summary(self, state: Dict) -> str:
"""Get human-readable session summary"""
stats = state.get("session_stats", {})
created = datetime.datetime.fromisoformat(state["created_at"])
return f"""Session {self.session_id}:
- Created: {created.strftime('%Y-%m-%d %H:%M:%S UTC')}
- Messages: {stats.get('total_messages', 0)}
- Code Executions: {stats.get('total_code_executions', 0)}
- Web Searches: {stats.get('total_searches', 0)}
- Errors: {stats.get('total_errors', 0)}
- Duration: {stats.get('session_duration_seconds', 0)}s
- Hardware: {state.get('hardware_config', {}).get('gpu_type', 'unknown')}
- Model: {state.get('api_config', {}).get('model_name', 'unknown')}"""
def execute_code(sbx, code):
logger.debug(f"Executing code in sandbox ({len(code)} characters)")
execution = sbx.run_code(code, on_stdout=lambda data: logger.debug(f'stdout: {data}'))
output = ""
if len(execution.logs.stdout) > 0:
output += "\n".join(execution.logs.stdout)
logger.debug(f"Execution produced {len(execution.logs.stdout)} stdout lines")
if len(execution.logs.stderr) > 0:
output += "\n".join(execution.logs.stderr)
logger.debug(f"Execution produced {len(execution.logs.stderr)} stderr lines")
if execution.error is not None:
output += execution.error.traceback
logger.warning(f"Execution error: {execution.error.name}: {execution.error.value}")
logger.debug(f"Code execution completed, output length: {len(output)}")
return output, execution
def parse_exec_result_llm(execution, max_code_output=1000):
logger.debug(f"Parsing execution result for LLM (max_output: {max_code_output})")
output = []
def truncate_if_needed(text):
if len(text) > max_code_output:
return (text[:max_code_output] + f"\n[Output is truncated as it is more than {max_code_output} characters]")
return text
if execution.results:
results_text_parts = []
plot_count = 0
for result in execution.results:
if hasattr(result, 'text') and result.text:
results_text_parts.append(result.text)
elif hasattr(result, 'png') and result.png:
plot_count += 1
results_text_parts.append(f"[Plot {plot_count} generated and displayed]")
elif hasattr(result, 'html') and result.html:
results_text_parts.append("[HTML output generated]")
if results_text_parts:
results_text = "\n".join(results_text_parts)
output.append(truncate_if_needed(results_text))
logger.debug(f"Added {len(execution.results)} execution results (including {plot_count} plots)")
if execution.logs.stdout:
stdout_text = "\n".join(execution.logs.stdout)
output.append(truncate_if_needed(stdout_text))
logger.debug(f"Added stdout output ({len(execution.logs.stdout)} lines)")
if execution.logs.stderr:
stderr_text = "\n".join(execution.logs.stderr)
output.append(truncate_if_needed(stderr_text))
logger.debug(f"Added stderr output ({len(execution.logs.stderr)} lines)")
if execution.error is not None:
output.append(truncate_if_needed(execution.error.traceback))
logger.debug(f"Added error traceback: {execution.error.name}")
final_output = "\n".join(output)
logger.debug(f"Parsed execution result for LLM: {len(final_output)} characters")
return final_output
def clean_messages_for_api(messages):
"""
Create a clean copy of messages without raw_execution fields and metadata for API calls.
Also validates that tool calls have corresponding tool responses.
This prevents 413 errors and API validation errors.
"""
logger.debug(f"Cleaning {len(messages)} messages for API call")
cleaned_messages = []
raw_execution_count = 0
metadata_count = 0
pending_tool_calls = set()
for message in messages:
cleaned_message = message.copy()
# Remove raw_execution data
if "raw_execution" in cleaned_message:
cleaned_message.pop("raw_execution")
raw_execution_count += 1
# Remove metadata and timestamp
if "metadata" in cleaned_message:
cleaned_message.pop("metadata")
metadata_count += 1
if "timestamp" in cleaned_message:
cleaned_message.pop("timestamp")
# Track tool calls and responses for validation
if cleaned_message.get("role") == "assistant" and cleaned_message.get("tool_calls"):
for tool_call in cleaned_message["tool_calls"]:
pending_tool_calls.add(tool_call["id"])
elif cleaned_message.get("role") == "tool" and cleaned_message.get("tool_call_id"):
pending_tool_calls.discard(cleaned_message["tool_call_id"])
cleaned_messages.append(cleaned_message)
# If there are pending tool calls without responses, remove the assistant message with tool calls
if pending_tool_calls:
logger.warning(f"Found {len(pending_tool_calls)} tool calls without responses: {pending_tool_calls}")
logger.warning("Removing incomplete tool call messages to prevent API errors")
# Remove messages with incomplete tool calls
filtered_messages = []
for message in cleaned_messages:
if (message.get("role") == "assistant" and
message.get("tool_calls") and
any(tc["id"] in pending_tool_calls for tc in message["tool_calls"])):
logger.debug("Removing assistant message with incomplete tool calls")
continue
filtered_messages.append(message)
cleaned_messages = filtered_messages
logger.debug(f"Cleaned messages: removed raw_execution from {raw_execution_count}, metadata from {metadata_count}")
logger.debug(f"Final cleaned message count: {len(cleaned_messages)}")
return cleaned_messages
def web_search(query):
"""
Perform web search using Tavily API with automatic year addition and formatting.
Args:
query (str): Search query (max 400 characters)
Returns:
str: Formatted search results for LLM consumption
"""
if not tavily_client:
logger.error("Tavily client not initialized - API key missing")
return "❌ Search unavailable: Tavily API key not configured"
# Validate query length
if len(query) > 400:
logger.warning(f"Query too long ({len(query)} chars), truncating to 400")
query = query[:400]
# Add current year to query for more recent results
current_year = datetime.datetime.now().year
if str(current_year) not in query:
# Only add year if query has room for it
year_addition = f" {current_year}"
if len(query + year_addition) <= 400:
query += year_addition
logger.debug(f"Added current year to query: {current_year}")
logger.info(f"Performing Tavily search: '{query}' ({len(query)} chars)")
try:
# Perform search with optimized parameters
response = tavily_client.search(
query=query,
search_depth="basic", # Use basic for faster results
max_results=5, # Limit results to avoid overwhelming context
include_answer=True, # Include AI-generated answer
include_raw_content=False, # Don't include raw content to save tokens
include_images=False # Don't include images
)
logger.info(f"Search completed: {len(response.get('results', []))} results found")
# Format results for LLM consumption
formatted_results = format_search_results_for_llm(response)
logger.debug(f"Formatted search results: {len(formatted_results)} characters")
return formatted_results
except Exception as e:
logger.error(f"Tavily search failed: {str(e)}")
return f"❌ Search failed: {str(e)}"
def format_search_results_for_llm(response):
"""Format Tavily search results for LLM consumption"""
query = response.get('query', 'Unknown query')
results = response.get('results', [])
answer = response.get('answer', '')
formatted = f"🔍 **Web Search Results for:** {query}\n\n"
if answer:
formatted += f"**Quick Answer:** {answer}\n\n"
if results:
formatted += f"**Found {len(results)} relevant sources:**\n\n"
for i, result in enumerate(results, 1):
title = result.get('title', 'Untitled')
url = result.get('url', '')
content = result.get('content', '')
score = result.get('score', 0)
# Truncate content to reasonable length
# if len(content) > 300:
# content = content[:300] + "..."
formatted += f"**{i}. {title}** (Relevance: {score:.2f})\n"
formatted += f" 🔗 {url}\n"
formatted += f" 📄 {content}\n\n"
else:
formatted += "No results found.\n"
return formatted
def run_interactive_notebook_with_session_state(client, model, session_state_manager, session_state, sbx, stop_event=None, tools=None):
logger.info(f"Starting interactive notebook with session state for {session_state_manager.session_id}")
# Get conversation history from session state
messages = session_state_manager.get_conversation_history(session_state)
notebook = JupyterNotebook(messages)
# Update execution state
session_state_manager.update_execution_state(session_state, is_running=True, sandbox_active=True, current_phase="initializing")
# Use provided tools or default to all tools
if tools is None:
tools = TOOLS
try:
sbx_info = sbx.get_info()
notebook.add_sandbox_countdown(sbx_info.started_at, sbx_info.end_at)
# Store sandbox info in session state
session_state["execution_state"]["sandbox_info"] = {
"started_at": sbx_info.started_at.isoformat(),
"end_at": sbx_info.end_at.isoformat(),
"timeout_seconds": int((sbx_info.end_at - sbx_info.started_at).total_seconds())
}
logger.debug(f"Added sandbox countdown: {sbx_info.started_at} to {sbx_info.end_at}")
except Exception as e:
logger.warning(f"Failed to get sandbox info: {str(e)}")
logger.debug("Initial notebook yield in 'generating' mode")
# Update notebook data in session state
session_state_manager.update_notebook_data(session_state, notebook.data)
# Save initial state
session_state_manager.save_state(session_state)
yield notebook.render(mode="generating"), notebook.data, messages
max_code_output = 1000
turns = session_state["execution_state"]["current_turn"]
done = False
previous_execution_had_error = False
previous_execution_had_warnings = False
logger.info(f"Starting interactive loop from turn {turns} with max_output={max_code_output}, max_turns={MAX_TURNS}")
while not done and (turns <= MAX_TURNS) and (stop_event is None or not stop_event.is_set()):
turns += 1
logger.info(f"Starting turn {turns}/{MAX_TURNS}")
try:
# Update phase to generating
session_state_manager.update_execution_state(session_state, current_phase="generating")
# Refresh messages from session state before API call
messages = session_state_manager.get_conversation_history(session_state)
logger.debug(f"Making API call to {model} with {len(messages)} messages")
# Prepare request data for logging
request_data = {
"messages": clean_messages_for_api(messages),
"model": model,
"tools": tools,
"tool_choice": "auto"
}
# Prepare session metadata for Phoenix tracing
session_metadata = {
"turn": turns,
"max_turns": MAX_TURNS,
"model": model,
"tools_count": len(tools),
"messages_count": len(messages),
"current_phase": "generating"
}
# Add hardware config if available
if "hardware_config" in session_state:
hw_config = session_state["hardware_config"]
session_metadata.update({
"gpu_type": hw_config.get("gpu_type", "unknown"),
"cpu_cores": hw_config.get("cpu_cores", "unknown"),
"memory_gb": hw_config.get("memory_gb", "unknown")
})
# Wrap OpenAI API call with Phoenix session context for proper grouping
with create_phoenix_session_context(
session_id=session_state_manager.session_id,
user_id=None, # Could be extracted from request context if available
metadata=session_metadata
):
logger.debug(f"Making OpenAI API call with Phoenix session context: {session_state_manager.session_id}")
response = client.chat.completions.create(**request_data)
logger.debug("API call successful within Phoenix session context")
# Log the complete LLM interaction
session_state_manager.log_llm_interaction(
session_state, request_data, response.model_dump(), model, turns
)
except Exception as e:
# Handle inference client errors
logger.error(f"Inference failed on turn {turns}: {str(e)}")
# Add detailed error information to the notebook
error_message = str(e)
if "429" in error_message or "too_many_requests" in error_message.lower():
detailed_error = f"""**API Rate Limit Exceeded** 🚫
The inference service has reached its rate limit. This typically means:
- Too many requests have been sent in a short period
- Daily quota has been exceeded
- Service is temporarily overloaded
**What you can try:**
- Wait a few minutes and try again
- If using Cerebras API, check your daily quota
- Try using a different model or service
- Contact support if the issue persists
**Technical details:**
```
{error_message}
```"""
elif "401" in error_message or "unauthorized" in error_message.lower():
detailed_error = f"""**Authentication Error** 🔐
There's an issue with API authentication:
- API key might be missing or invalid
- API key might have expired
- Insufficient permissions
**Technical details:**
```
{error_message}
```"""
elif "500" in error_message or "internal" in error_message.lower():
detailed_error = f"""**Server Error** 🔧
The inference service encountered an internal error:
- Service might be temporarily unavailable
- Try again in a few moments
- If the issue persists, it's likely a service-side problem
**Technical details:**
```
{error_message}
```"""
else:
detailed_error = f"""**Inference Service Error** ⚠️
An error occurred while communicating with the AI service:
**Technical details:**
```
{error_message}
```
**What you can try:**
- Check your internet connection
- Try again in a few moments
- If the problem persists, contact support"""
notebook.add_error(detailed_error)
# Add error to session state
session_state_manager.add_message(
session_state, "assistant", detailed_error,
metadata={"type": "error", "error_type": "api_error", "turn": turns}
)
# Update execution state
session_state_manager.update_execution_state(
session_state, is_running=False, last_execution_successful=False
)
# Update notebook data and save state
session_state_manager.update_notebook_data(session_state, notebook.data)
session_state_manager.save_state(session_state)
yield notebook.render(mode="error"), notebook.data, messages
return
# Get the response content and tool calls
full_response = response.choices[0].message.content or ""
tool_calls = response.choices[0].message.tool_calls or []
logger.debug(f"Turn {turns}: Response content length: {len(full_response)}, Tool calls: {len(tool_calls)}")
# Add markdown cell for assistant's thinking
if full_response.strip():
logger.debug(f"Adding assistant response as markdown ({len(full_response)} chars)")
notebook.add_markdown(full_response, "assistant")
else:
logger.debug("Skipping empty assistant response")
# Handle tool calls and add assistant message to session state only
if tool_calls:
logger.info(f"Processing {len(tool_calls)} tool calls on turn {turns}")
# Add assistant message to session state (messages will be derived from this)
session_state_manager.add_message(
session_state, "assistant", full_response,
tool_calls=[{
"id": tc.id,
"type": "function",
"function": {"name": tc.function.name, "arguments": tc.function.arguments}
} for tc in tool_calls],
metadata={"turn": turns, "type": "thinking"}
)
logger.debug(f"Added assistant message with {len(tool_calls)} tool calls to session state")
elif full_response.strip():
# If no tool calls but we have content, add regular assistant message
session_state_manager.add_message(
session_state, "assistant", full_response,
metadata={"turn": turns, "type": "thinking"}
)
logger.debug("Added regular assistant message to session state")
for i, tool_call in enumerate(tool_calls):
logger.debug(f"Processing tool call {i+1}/{len(tool_calls)}: {tool_call.function.name}")
if tool_call.function.name == "add_and_execute_jupyter_code_cell":
# Update phase to executing code
session_state_manager.update_execution_state(session_state, current_phase="executing_code")
logger.debug(f"Processing code execution tool call: {tool_call.id}")
tool_args = json.loads(tool_call.function.arguments)
code = tool_args["code"]
logger.debug(f"Code to execute: {len(code)} characters")
# Determine if we should reuse the last cell or create a new one
# Reuse if there were errors (not just warnings) in the previous execution
should_reuse_cell = (previous_execution_had_error and
notebook.get_last_cell_type() == "code")
if should_reuse_cell:
logger.info("Reusing last code cell due to previous execution error")
# Update the existing cell's code instead of creating a new one
notebook.update_last_code_cell(code)
else:
logger.debug("Creating new code cell")
# Create a new cell (normal behavior)
notebook.add_code(code)
logger.debug("Yielding notebook in 'executing' mode")
yield notebook.render(mode="executing"), notebook.data, messages
try:
# Check for stop event before execution
if stop_event and stop_event.is_set():
logger.info("Stop event detected before code execution")
stopped_message = """**Execution Stopped** ⏸️
The execution was stopped by user request before the code could run."""
notebook.add_markdown(stopped_message, "assistant")
yield notebook.render(mode="stopped"), notebook.data, messages
return
# Execution sandbox call - might timeout
logger.info("Executing code in sandbox")
execution = sbx.run_code(code)
notebook.append_execution(execution)
# Update error and warning tracking for next iteration
previous_execution_had_error = notebook.has_execution_error(execution)
previous_execution_had_warnings = notebook.has_execution_warnings(execution)
# Log tool execution in session state
tool_args = json.loads(tool_call.function.arguments)
tool_response_content = parse_exec_result_llm(execution, max_code_output=max_code_output)
session_state_manager.log_tool_execution(
session_state, tool_call.id, "add_and_execute_jupyter_code_cell",
tool_args, tool_response_content, execution
)
if previous_execution_had_error:
logger.warning("Code execution resulted in error")
elif previous_execution_had_warnings:
logger.info("Code execution completed with warnings")
else:
logger.info("Code execution completed successfully")
except Exception as e:
# Handle sandbox timeout/execution errors
logger.error(f"Code execution failed: {str(e)}")
# Add detailed error information for code execution failures
error_message = str(e)
if "timeout" in error_message.lower():
detailed_error = f"""**Code Execution Timeout** ⏰
The code execution took too long and was terminated:
- Code may have entered an infinite loop
- Processing large datasets can cause timeouts
- Complex computations may exceed time limits
**What you can try:**
- Optimize your code for better performance
- Break down complex operations into smaller steps
- Increase the timeout limit in settings
- Check for infinite loops or blocking operations
**Technical details:**
```
{error_message}
```"""
else:
detailed_error = f"""**Code Execution Failed** 💥
An error occurred while executing the code in the sandbox:
**Technical details:**
```
{error_message}
```
**What you can try:**
- Check the code for syntax errors
- Verify all required packages are available
- Try simplifying the code
- Check the sandbox logs for more details"""
notebook.add_error(detailed_error)
yield notebook.render(mode="error"), notebook.data, messages
return
# Prepare tool response (already computed above)
raw_execution = notebook.parse_exec_result_nb(execution)
logger.debug(f"Tool response: {len(tool_response_content)} chars content, {len(raw_execution)} raw outputs")
# Add tool response to session state only
session_state_manager.add_message(
session_state, "tool", tool_response_content,
tool_call_id=tool_call.id, raw_execution=raw_execution,
metadata={"turn": turns, "execution_successful": not previous_execution_had_error}
)
elif tool_call.function.name == "web_search":
# Update phase to searching
session_state_manager.update_execution_state(session_state, current_phase="searching")
logger.debug(f"Processing search tool call: {tool_call.id}")
tool_args = json.loads(tool_call.function.arguments)
query = tool_args["query"]
logger.debug(f"Search query: '{query}' ({len(query)} chars)")
# Add search status to notebook
notebook.add_markdown("🔍 **Searching the web...**", "assistant")
yield notebook.render(mode="generating"), notebook.data, messages
try:
# Perform search
search_results = web_search(query)
logger.info("Search completed successfully")
# Log search tool execution
tool_args = json.loads(tool_call.function.arguments)
session_state_manager.log_tool_execution(
session_state, tool_call.id, "web_search",
tool_args, search_results
)
# Add search results to notebook
notebook.add_markdown(search_results, "assistant")
# Add tool response to session state only
session_state_manager.add_message(
session_state, "tool", search_results,
tool_call_id=tool_call.id,
metadata={"turn": turns, "search_successful": True}
)
except Exception as e:
error_message = f"❌ Search failed: {str(e)}"
logger.error(f"Search tool call failed: {str(e)}")
# Log failed search
tool_args = json.loads(tool_call.function.arguments)
session_state_manager.log_tool_execution(
session_state, tool_call.id, "web_search",
tool_args, error_message
)
# Add error to notebook
notebook.add_markdown(error_message, "assistant")
# Add error response to session state only
session_state_manager.add_message(
session_state, "tool", error_message,
tool_call_id=tool_call.id,
metadata={"turn": turns, "search_successful": False, "error": str(e)}
)
elif tool_call.function.name == "edit_and_execute_current_cell":
# Update phase to executing code
session_state_manager.update_execution_state(session_state, current_phase="executing_code")
logger.debug(f"Processing edit current cell tool call: {tool_call.id}")
tool_args = json.loads(tool_call.function.arguments)
code = tool_args["code"]
logger.debug(f"Code to execute in current cell: {len(code)} characters")
# Check if we have a code cell to edit
if notebook.get_last_cell_type() == "code":
logger.info("Editing last code cell with new code")
notebook.update_last_code_cell(code)
else:
logger.info("No code cell to edit, creating new cell")
notebook.add_code(code)
logger.debug("Yielding notebook in 'executing' mode")
yield notebook.render(mode="executing"), notebook.data, messages
try:
# Check for stop event before execution
if stop_event and stop_event.is_set():
logger.info("Stop event detected before code execution")
stopped_message = """**Execution Stopped** ⏸️
The execution was stopped by user request before the code could run."""
notebook.add_markdown(stopped_message, "assistant")
yield notebook.render(mode="stopped"), notebook.data, messages
return
# Execution sandbox call - might timeout
logger.info("Executing edited code in sandbox")
execution = sbx.run_code(code)
notebook.append_execution(execution)
# Update error and warning tracking for next iteration
previous_execution_had_error = notebook.has_execution_error(execution)
previous_execution_had_warnings = notebook.has_execution_warnings(execution)
# Log tool execution in session state
tool_response_content = parse_exec_result_llm(execution, max_code_output=max_code_output)
session_state_manager.log_tool_execution(
session_state, tool_call.id, "edit_and_execute_current_cell",
tool_args, tool_response_content, execution
)
if previous_execution_had_error:
logger.warning("Edited code execution resulted in error")
elif previous_execution_had_warnings:
logger.info("Edited code execution completed with warnings")
else:
logger.info("Edited code execution completed successfully")
except Exception as e:
# Handle sandbox timeout/execution errors
logger.error(f"Edited code execution failed: {str(e)}")
# Add detailed error information for code execution failures
error_message = str(e)
if "timeout" in error_message.lower():
detailed_error = f"""**Code Execution Timeout** ⏰
The edited code execution took too long and was terminated:
- Code may have entered an infinite loop
- Processing large datasets can cause timeouts
- Complex computations may exceed time limits
**What you can try:**
- Optimize your code for better performance
- Break down complex operations into smaller steps
- Increase the timeout limit in settings
- Check for infinite loops or blocking operations
**Technical details:**
```
{error_message}
```"""
else:
detailed_error = f"""**Code Execution Failed** 💥
An error occurred while executing the edited code in the sandbox:
**Technical details:**
```
{error_message}
```
**What you can try:**
- Check the code for syntax errors
- Verify all required packages are available
- Try simplifying the code
- Check the sandbox logs for more details"""
notebook.add_error(detailed_error)
yield notebook.render(mode="error"), notebook.data, messages
return
# Prepare tool response
raw_execution = notebook.parse_exec_result_nb(execution)
logger.debug(f"Tool response: {len(tool_response_content)} chars content, {len(raw_execution)} raw outputs")
# Add tool response to session state only
session_state_manager.add_message(
session_state, "tool", tool_response_content,
tool_call_id=tool_call.id, raw_execution=raw_execution,
metadata={"turn": turns, "execution_successful": not previous_execution_had_error, "action": "edit_cell"}
)
elif tool_call.function.name == "execute_shell_command":
# Update phase to executing shell command
session_state_manager.update_execution_state(session_state, current_phase="executing_shell")
logger.debug(f"Processing shell command tool call: {tool_call.id}")
tool_args = json.loads(tool_call.function.arguments)
command = tool_args["command"]
logger.debug(f"Shell command to execute: '{command}'")
# Add shell command to notebook with special styling
notebook.add_shell_command(command)
logger.debug("Yielding notebook in 'executing' mode")
yield notebook.render(mode="executing"), notebook.data, messages
try:
# Check for stop event before execution
if stop_event and stop_event.is_set():
logger.info("Stop event detected before shell execution")
stopped_message = """**Execution Stopped** ⏸️
The execution was stopped by user request before the shell command could run."""
notebook.add_markdown(stopped_message, "assistant")
yield notebook.render(mode="stopped"), notebook.data, messages
return
# Execute shell command in sandbox using raw shell execution
logger.info(f"Executing raw shell command in sandbox: {command}")
try:
# Use the new raw shell execution method
if hasattr(sbx, 'run_shell'):
shell_execution = sbx.run_shell(command, timeout=60)
logger.info("Shell command executed using raw shell method")
else:
# Fallback: Execute shell command using Python subprocess within sandbox
shell_code = f"""
import subprocess
import sys
try:
result = subprocess.run(
{repr(command)},
shell=True,
capture_output=True,
text=True,
timeout=60
)
if result.stdout:
print("STDOUT:")
print(result.stdout)
if result.stderr:
print("STDERR:")
print(result.stderr)
print(f"Exit code: {{result.returncode}}")
except subprocess.TimeoutExpired:
print("Error: Command timed out after 60 seconds")
except Exception as e:
print(f"Error executing command: {{e}}")
"""
shell_execution = sbx.run_code(shell_code)
logger.info("Shell command executed via Python subprocess fallback")
# Add shell execution results to notebook
notebook.append_shell_execution(shell_execution)
# Prepare response content for LLM
shell_response_content = parse_exec_result_llm(shell_execution, max_code_output=max_code_output)
# Log tool execution in session state
session_state_manager.log_tool_execution(
session_state, tool_call.id, "execute_shell_command",
tool_args, shell_response_content, shell_execution
)
# Check for errors
shell_had_error = notebook.has_execution_error(shell_execution)
if shell_had_error:
logger.warning("Shell command execution resulted in error")
else:
logger.info("Shell command execution completed successfully")
except Exception as shell_error:
logger.error(f"Shell command execution failed: {str(shell_error)}")
# Create error message
detailed_error = f"""**Shell Command Failed** 🔧
An error occurred while executing the shell command:
**Command:** `{command}`
**Technical details:**
```
{str(shell_error)}
```
**What you can try:**
- Check if the command exists in the sandbox environment
- Verify command syntax
- Try a simpler version of the command
- Check if required tools/packages are installed"""
notebook.add_error(detailed_error)
# Log failed execution
session_state_manager.log_tool_execution(
session_state, tool_call.id, "execute_shell_command",
tool_args, detailed_error
)
yield notebook.render(mode="error"), notebook.data, messages
return
except Exception as e:
# Handle general execution errors
logger.error(f"Shell command execution failed: {str(e)}")
detailed_error = f"""**Shell Execution Error** ⚠️
An unexpected error occurred while executing the shell command:
**Command:** `{command}`
**Technical details:**
```
{str(e)}
```"""
notebook.add_error(detailed_error)
yield notebook.render(mode="error"), notebook.data, messages
return
# Prepare tool response for LLM and session state
raw_execution = notebook.parse_exec_result_nb(shell_execution)
logger.debug(f"Shell tool response: {len(shell_response_content)} chars content")
# Add tool response to session state
session_state_manager.add_message(
session_state, "tool", shell_response_content,
tool_call_id=tool_call.id, raw_execution=raw_execution,
metadata={"turn": turns, "command": command, "execution_successful": not shell_had_error, "action": "shell_command"}
)
else:
logger.warning(f"Unknown tool call function: {tool_call.function.name}")
if not tool_calls:
logger.info(f"No tool calls on turn {turns}, conversation ending")
if len(full_response.strip())==0:
logger.error("Assistant provided no content and no tool calls")
notebook.add_error(f"No tool call and empty assistant response:\n{response.model_dump_json(indent=2)}")
# Only add the final assistant message if we didn't already add it above
# (in the elif full_response.strip() block)
if full_response.strip():
# Since we're now only using session state, we can safely add the message
# The session state manager will handle any deduplication if needed
session_state_manager.add_message(
session_state, "assistant", full_response,
metadata={"turn": turns, "type": "final_response"}
)
logger.debug("Added final assistant response to session state")
done = True
# Update session state after each turn
session_state_manager.update_execution_state(
session_state, current_turn=turns, last_execution_successful=not previous_execution_had_error
)
session_state_manager.update_notebook_data(session_state, notebook.data)
session_state_manager.save_state(session_state)
if done:
logger.info(f"Interactive notebook completed after {turns} turns")
session_state_manager.update_execution_state(
session_state, is_running=False, sandbox_active=True
)
session_state_manager.save_state(session_state)
yield notebook.render(mode="done"), notebook.data, messages
else:
logger.debug(f"Turn {turns} completed, yielding in 'generating' mode")
yield notebook.render(mode="generating"), notebook.data, messages
if turns > MAX_TURNS:
logger.warning(f"Interactive notebook reached maximum turns ({MAX_TURNS})")
error_msg = f"**Maximum Turns Reached** 🔄\n\nThe conversation has reached the maximum number of turns ({MAX_TURNS}). This is a safety limit to prevent infinite loops.\n\n**What you can try:**\n- Start a new conversation\n- Clear the notebook and begin fresh\n- Contact support if you need a higher turn limit"
notebook.add_error(error_msg)
# Add error to session state
session_state_manager.add_message(
session_state, "assistant", error_msg,
metadata={"type": "error", "error_type": "max_turns_exceeded", "turn": turns}
)
# Update final state
session_state_manager.update_execution_state(
session_state, is_running=False, last_execution_successful=False
)
session_state_manager.update_notebook_data(session_state, notebook.data)
session_state_manager.save_state(session_state)
yield notebook.render(mode="error"), notebook.data, messages
elif stop_event and stop_event.is_set():
logger.info("Interactive notebook stopped by user")
# Add a stopped message to the notebook
stopped_message = """**Execution Stopped** ⏸️
The execution was stopped by user request. You can resume by clicking Run again."""
notebook.add_markdown(stopped_message, "assistant")
# Add stopped message to session state
session_state_manager.add_message(
session_state, "assistant", stopped_message,
metadata={"type": "status", "status_type": "stopped_by_user", "turn": turns}
)
# Update state to indicate pause
session_state_manager.update_execution_state(
session_state, is_running=False, is_paused=True
)
session_state_manager.update_notebook_data(session_state, notebook.data)
session_state_manager.save_state(session_state)
yield notebook.render(mode="stopped"), notebook.data, messages
def run_interactive_notebook(client, model, messages, sbx, stop_event=None, tools=None):
"""Backward compatibility wrapper for the new session state system"""
logger.warning("Using legacy run_interactive_notebook - this should be replaced with session state version")
# Create a temporary session for backward compatibility
import uuid
temp_session_id = str(uuid.uuid4())[:8]
session_manager = SessionStateManager(temp_session_id)
# Create basic session state
session_state = session_manager.create_initial_state(
hardware_config={"gpu_type": "unknown", "cpu_cores": 2, "memory_gb": 8, "timeout_sec": 300},
api_config={"model_name": model, "provider_type": "unknown"},
environment={"variables": "", "files_uploaded": []},
system_prompt=messages[0].get("content", "") if messages and messages[0].get("role") == "system" else ""
)
# Initialize conversation history with provided messages
session_state["conversation_history"] = messages
# Use the new session-based function
yield from run_interactive_notebook_with_session_state(
client, model, session_manager, session_state, sbx, stop_event, tools
) |