Spaces:
Running
Running
File size: 32,695 Bytes
744e5e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
"""
Modal Sandbox wrapper to provide E2B-compatible interface for the Jupyter Agent.
Simplified implementation using Modal's native API.
"""
import modal
import datetime
from typing import Optional, Dict, List
import json
import logging
import time
logger = logging.getLogger(__name__)
class ModalResult:
"""Mock E2B result structure for displaying outputs like plots"""
def __init__(self, text: str = "", html: str = "", png: str = "", svg: str = "",
jpeg: str = "", pdf: str = "", latex: str = "", json: str = "",
javascript: str = "", is_main_result: bool = True):
self.text = text
self.html = html
self.png = png
self.svg = svg
self.jpeg = jpeg
self.pdf = pdf
self.latex = latex
self.json = json
self.javascript = javascript
self.is_main_result = is_main_result
class ModalExecution:
"""Mock E2B execution result to maintain compatibility with existing code"""
def __init__(self, stdout: str = "", stderr: str = "", error: Optional[Dict] = None, results: List[ModalResult] = None):
self.logs = ModalLogs(stdout, stderr)
self.error = ModalError(error) if error else None
self.results = results or []
self.execution_count = 1
class ModalLogs:
"""Mock E2B logs structure"""
def __init__(self, stdout: str = "", stderr: str = ""):
self.stdout = [stdout] if stdout else []
self.stderr = [stderr] if stderr else []
class ModalError:
"""Mock E2B error structure"""
def __init__(self, error_data: Dict):
self.name = error_data.get('name', 'Error')
self.value = error_data.get('value', 'Unknown error')
self.traceback = error_data.get('traceback', f"{self.name}: {self.value}")
class ModalFiles:
"""Simplified Modal files interface using native Modal Sandbox API"""
def __init__(self, modal_sandbox):
self.modal_sandbox = modal_sandbox # ModalSandbox wrapper
self.max_file_size = 100 * 1024 * 1024 # 100MB limit
@property
def _sandbox(self):
"""Get the actual Modal sandbox instance"""
return self.modal_sandbox._sandbox
def write(self, path: str, content):
"""Write file to Modal sandbox using native Modal API"""
try:
# Handle file-like objects
if hasattr(content, 'read'):
file_content = content.read()
# Reset file pointer if possible
if hasattr(content, 'seek'):
content.seek(0)
else:
file_content = content
# Check file size for bytes content
content_size = len(file_content) if isinstance(file_content, (bytes, str)) else 0
if content_size > self.max_file_size:
raise ValueError(f"File size ({content_size} bytes) exceeds maximum allowed size ({self.max_file_size} bytes)")
# Use Modal's native file API
if isinstance(file_content, bytes):
# Write binary content
with self._sandbox.open(path, "wb") as f:
f.write(file_content)
else:
# Write text content
with self._sandbox.open(path, "w") as f:
f.write(str(file_content))
logger.debug(f"Successfully wrote file {path} ({content_size} bytes) using Modal native API")
except Exception as e:
logger.error(f"Failed to write file {path}: {str(e)}")
raise RuntimeError(f"Could not write file {path}: {str(e)}")
def read(self, path: str, mode: str = "r"):
"""Read file from Modal sandbox using native API"""
try:
with self._sandbox.open(path, mode) as f:
return f.read()
except Exception as e:
logger.error(f"Failed to read file {path}: {str(e)}")
raise
def exists(self, path: str) -> bool:
"""Check if file exists in Modal sandbox"""
try:
# Try to open the file to check existence
with self._sandbox.open(path, "r"):
pass
return True
except Exception:
return False
def list_files(self, directory: str = ".") -> List[str]:
"""List files in directory using Modal's native ls method"""
try:
return self._sandbox.ls(directory)
except Exception as e:
logger.error(f"Failed to list files in {directory}: {str(e)}")
return []
def verify_file_upload(self, path: str, expected_size: Optional[int] = None) -> bool:
"""Verify that a file was uploaded correctly"""
try:
if not self.exists(path):
logger.error(f"File {path} does not exist after upload")
return False
# Check file size if expected size is provided
if expected_size is not None:
# Use Modal's exec to get file size
result = self._sandbox.exec("wc", "-c", path)
result.wait()
if result.returncode == 0:
output = result.stdout.read().strip()
actual_size = int(output.split()[0])
if actual_size != expected_size:
logger.error(f"File {path} size mismatch: expected {expected_size}, got {actual_size}")
return False
else:
logger.debug(f"File {path} size verified: {actual_size} bytes")
else:
logger.warning(f"Could not verify file size for {path}")
logger.debug(f"File {path} upload verification successful")
return True
except Exception as e:
logger.error(f"Failed to verify file upload {path}: {str(e)}")
return False
class ModalSandboxInfo:
"""Mock E2B sandbox info for countdown timer"""
def __init__(self, timeout_seconds: int = 300):
self.started_at = datetime.datetime.now(datetime.timezone.utc)
self.end_at = self.started_at + datetime.timedelta(seconds=timeout_seconds)
class ModalSandbox:
"""Modal sandbox wrapper that provides E2B-compatible interface"""
def __init__(self, gpu_config: str = "cpu", cpu_cores: float = 2.0, memory_mb: int = 8192,
timeout: int = 300, environment_vars: Dict[str, str] = None):
"""
Initialize Modal sandbox with hardware configuration
Args:
gpu_config: GPU configuration (e.g., "cpu", "T4", "A100-40GB", "H100")
cpu_cores: Number of CPU cores
memory_mb: Memory in MB
timeout: Timeout in seconds
environment_vars: Environment variables to set
"""
self.gpu_config = gpu_config
self.cpu_cores = cpu_cores
self.memory_mb = memory_mb
self.timeout = timeout
self.environment_vars = environment_vars or {}
self.files = ModalFiles(self)
self._sandbox = None
self._app = None
self._sandbox_info = ModalSandboxInfo(timeout)
self._persistent_session = None # For maintaining state across executions
# Define package lists for different hardware configurations
CPU_PACKAGES = [
"jupyter-server", "ipykernel", "ipython", "orjson", "pandas",
"matplotlib", "pillow", "numpy", "scipy", "scikit-learn",
"seaborn", "plotly", "requests", "beautifulsoup4", "opencv-python",
"nltk", "textblob", "librosa>=0.10.0", "soundfile", "sympy", "xarray"
]
GPU_PACKAGES = [
"jupyter-server", "ipykernel", "ipython", "orjson", "pandas",
"matplotlib", "pillow", "numpy", "scipy", "scikit-learn",
"seaborn", "plotly", "requests", "beautifulsoup4", "opencv-python",
"nltk", "textblob", "librosa>=0.10.0", "soundfile", "sympy", "xarray",
# GPU-specific ML/AI packages
"torch", "transformers", "datasets", "bitsandbytes", "hf_transfer",
"peft", "trl", "accelerate", "xformers", "wandb", "deepspeed",
"pyyaml", "packaging", "rouge_score", "bert_score", "jiwer",
"tqdm", "pyarrow", "sentencepiece", "protobuf", "huggingface_hub"
]
# Store package lists for system prompt
self.available_packages = GPU_PACKAGES if gpu_config != "cpu" else CPU_PACKAGES
# Create appropriate image based on hardware configuration
if gpu_config == "cpu" or gpu_config == "CPU-only":
self.base_image = self._create_cpu_image(CPU_PACKAGES)
else:
self.base_image = self._create_gpu_image(GPU_PACKAGES)
self._setup_modal()
logger.info(f"Initialized Modal sandbox with {gpu_config} GPU, {cpu_cores} CPU cores, {memory_mb}MB RAM")
def _create_cpu_image(self, packages):
"""Create CPU-optimized image with basic data science packages"""
packages_string = " ".join(packages)
return (modal.Image.debian_slim()
.apt_install("git", "build-essential")
.run_commands("pip install --upgrade pip")
.run_commands("pip install uv")
.run_commands("uv pip install 'numba>=0.58.0' --system") # Ensure compatible numba version
.run_commands(f"uv pip install {packages_string} --system"))
def _create_gpu_image(self, packages):
"""Create GPU-optimized image with ML/AI packages including PyTorch and Transformers"""
# CUDA Configuration for SGLang
CUDA_VERSION = "12.8.1"
CUDA_FLAVOR = "devel"
CUDA_OS = "ubuntu24.04"
CUDA_TAG = f"{CUDA_VERSION}-{CUDA_FLAVOR}-{CUDA_OS}"
# Base packages that don't require special handling
base_packages = [pkg for pkg in packages if pkg not in [
"torch", "transformers", "bitsandbytes", "accelerate", "xformers",
"peft", "trl", "unsloth", "deepspeed"
]]
base_packages_string = " ".join(base_packages)
return (modal.Image.from_registry(f"nvidia/cuda:{CUDA_TAG}", add_python="3.12")
.env({"DEBIAN_FRONTEND": "noninteractive", "TZ": "UTC"})
.run_commands("ln -fs /usr/share/zoneinfo/UTC /etc/localtime")
.apt_install("git", "build-essential")
.run_commands("pip install --upgrade pip")
.run_commands("pip install uv")
.run_commands("uv pip install 'numba>=0.58.0' --system") # Ensure compatible numba version
.run_commands("uv pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124 --system")
.run_commands(f"uv pip install {base_packages_string} --system")
.env({"HF_HUB_ENABLE_HF_TRANSFER": "1"}))
def _setup_modal(self):
"""Setup Modal app and sandbox configuration"""
try:
# Initialize Modal app using lookup to create if missing
self._app = modal.App.lookup("jupyter-agent", create_if_missing=True)
# Configure hardware based on user selection
sandbox_kwargs = {
"image": self.base_image,
"timeout": self.timeout,
"cpu": self.cpu_cores,
"memory": self.memory_mb,
"app": self._app
}
# Add GPU configuration if not CPU-only
if self.gpu_config != "cpu" and self.gpu_config != "CPU-only":
if self.gpu_config == "T4":
sandbox_kwargs["gpu"] = modal.gpu.T4()
elif self.gpu_config == "L4":
sandbox_kwargs["gpu"] = modal.gpu.L4()
elif self.gpu_config == "A100-40GB":
sandbox_kwargs["gpu"] = modal.gpu.A100(size="40GB")
elif self.gpu_config == "A100-80GB":
sandbox_kwargs["gpu"] = modal.gpu.A100(size="80GB")
elif self.gpu_config == "H100":
sandbox_kwargs["gpu"] = modal.gpu.H100()
else:
print(f"Warning: Unknown GPU config {self.gpu_config}, falling back to CPU")
# Add environment variables
if self.environment_vars:
sandbox_kwargs["secrets"] = [
modal.Secret.from_dict(self.environment_vars)
]
# Create sandbox
self._sandbox = modal.Sandbox.create(**sandbox_kwargs)
except Exception as e:
print(f"Error setting up Modal sandbox: {e}")
raise
def _initialize_persistent_session(self):
"""Initialize a persistent Python session for stateful execution using file-based communication"""
if self._persistent_session is not None:
return # Session already exists
try:
logger.debug("Initializing persistent Python session with file-based communication")
# Create a persistent Python script that monitors for command files
session_script = '''
import sys
import json
import traceback
import base64
import io
import time
import os
import matplotlib
matplotlib.use('Agg') # Set backend before importing pyplot
import matplotlib.pyplot as plt
# Global namespace to maintain state - includes built-ins for better compatibility
_global_namespace = {
'__builtins__': __builtins__,
'__name__': '__main__',
'__doc__': None,
'__package__': None
}
# Store original show function and setup plot capture
_original_show = plt.show
_captured_figures = []
def _capture_show(*args, **kwargs):
"""Custom show function that captures figures as base64"""
global _captured_figures
try:
for fig_num in plt.get_fignums():
fig = plt.figure(fig_num)
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=100)
buf.seek(0)
img_base64 = base64.b64encode(buf.getvalue()).decode('utf-8')
_captured_figures.append(img_base64)
buf.close()
plt.close(fig)
except Exception as e:
print(f"Error capturing plot: {e}", file=sys.stderr)
# Replace plt.show with our capture function
plt.show = _capture_show
# Signal that session is ready
with open("/tmp/session_ready", "w") as f:
f.write("READY")
print("Persistent Python session started", flush=True)
# Process commands by monitoring for command files
while True:
try:
if os.path.exists("/tmp/execute_command"):
# Read and execute command
with open("/tmp/execute_command", "r") as f:
content = f.read().strip()
if not content:
continue # Skip empty files
try:
command = json.loads(content)
except json.JSONDecodeError:
print(f"Invalid JSON in command file: {content[:100]}...", file=sys.stderr)
continue # Skip malformed JSON
# Remove command file
os.remove("/tmp/execute_command")
if command.get("action") == "execute":
code = command.get("code", "")
_captured_figures = [] # Reset for this execution
try:
# Check if code contains shell commands (lines starting with !)
lines = code.strip().split('\\n')
shell_commands = []
python_code_lines = []
for line in lines:
stripped_line = line.strip()
if stripped_line.startswith('!'):
# This is a shell command
shell_cmd = stripped_line[1:].strip() # Remove the !
shell_commands.append(shell_cmd)
else:
# This is Python code
python_code_lines.append(line)
stdout_parts = []
stderr_parts = []
# Execute shell commands first
for shell_cmd in shell_commands:
try:
import subprocess
result = subprocess.run(
shell_cmd,
shell=True,
capture_output=True,
text=True,
timeout=60 # 60 second timeout for shell commands
)
if result.stdout:
stdout_parts.append(f"$ {shell_cmd}")
stdout_parts.append(result.stdout.rstrip())
if result.stderr:
stderr_parts.append(f"$ {shell_cmd}")
stderr_parts.append(result.stderr.rstrip())
# If command failed, add error info
if result.returncode != 0:
stderr_parts.append(f"Command exited with code {result.returncode}")
except subprocess.TimeoutExpired:
stderr_parts.append(f"$ {shell_cmd}")
stderr_parts.append("Command timed out after 60 seconds")
except Exception as e:
stderr_parts.append(f"$ {shell_cmd}")
stderr_parts.append(f"Error executing shell command: {str(e)}")
# Execute Python code if present
python_stdout = ""
if python_code_lines and any(line.strip() for line in python_code_lines):
python_code = '\\n'.join(python_code_lines)
# Capture stdout during Python execution
import io
from contextlib import redirect_stdout
stdout_buffer = io.StringIO()
with redirect_stdout(stdout_buffer):
# Execute code in the persistent namespace
exec(python_code, _global_namespace)
python_stdout = stdout_buffer.getvalue()
# Combine all stdout
all_stdout_parts = stdout_parts.copy()
if python_stdout:
all_stdout_parts.append(python_stdout.rstrip())
stdout_output = '\\n'.join(all_stdout_parts) if all_stdout_parts else ""
stderr_output = '\\n'.join(stderr_parts) if stderr_parts else ""
# Send results back
result = {
"status": "success",
"stdout": stdout_output,
"stderr": stderr_output,
"plots": _captured_figures.copy()
}
with open("/tmp/execute_result", "w") as f:
f.write(json.dumps(result))
except Exception as e:
error_result = {
"status": "error",
"error": {
"name": type(e).__name__,
"value": str(e),
"traceback": traceback.format_exc()
}
}
with open("/tmp/execute_result", "w") as f:
f.write(json.dumps(error_result))
elif command.get("action") == "terminate":
break
else:
# Sleep briefly to avoid busy waiting
time.sleep(0.1)
except Exception as e:
print(f"Session error: {e}", file=sys.stderr)
# Write error to result file
error_result = {
"status": "error",
"error": {
"name": type(e).__name__,
"value": str(e),
"traceback": traceback.format_exc()
}
}
with open("/tmp/execute_result", "w") as f:
f.write(json.dumps(error_result))
'''
# Start the persistent Python session (no stdin needed)
self._persistent_session = self._sandbox.exec(
"python3", "-c", session_script,
timeout=None # No timeout for persistent session
)
# Wait for the session to be ready by checking for the ready file
max_wait = 10 # Wait up to 10 seconds
for _ in range(max_wait * 10): # Check every 0.1 seconds
try:
with self._sandbox.open("/tmp/session_ready", "r") as f:
if f.read().strip() == "READY":
logger.info("Persistent Python session initialized successfully")
return
except Exception:
pass
time.sleep(0.1)
raise RuntimeError("Failed to initialize persistent session: timeout waiting for ready signal")
except Exception as e:
logger.error(f"Failed to initialize persistent session: {e}")
self._persistent_session = None
raise
def run_code(self, code: str, on_stdout=None) -> ModalExecution:
"""
Execute Python code or shell commands in persistent Modal sandbox session using file-based communication
Args:
code: Python code to execute (lines starting with '!' are treated as shell commands)
on_stdout: Callback for stdout (for compatibility, not fully implemented)
Returns:
ModalExecution object compatible with E2B execution results
"""
try:
if not self._sandbox:
raise RuntimeError("Sandbox not initialized")
# Initialize persistent session if not already done
if self._persistent_session is None:
self._initialize_persistent_session()
logger.debug(f"Executing code in persistent session ({len(code)} chars)")
# Clean up any existing command/result files
try:
self._sandbox.exec("rm", "-f", "/tmp/execute_command", "/tmp/execute_result").wait()
except Exception:
pass # Ignore cleanup errors
# Send execution command via file
command = {
"action": "execute",
"code": code
}
with self._sandbox.open("/tmp/execute_command", "w") as f:
f.write(json.dumps(command))
# Small delay to ensure file is fully written
time.sleep(0.01)
# Wait for result file to appear
max_wait = 60 # Wait up to 60 seconds for code execution
result = None
for _ in range(max_wait * 10): # Check every 0.1 seconds
try:
with self._sandbox.open("/tmp/execute_result", "r") as f:
result_json = f.read().strip()
if result_json: # Make sure file has content
try:
result = json.loads(result_json)
break
except json.JSONDecodeError as e:
logger.debug(f"Invalid JSON in result file: {e}")
continue # Try again
except Exception:
pass
time.sleep(0.1)
if result is None:
raise RuntimeError("Timeout waiting for code execution result")
# Clean up result file
try:
self._sandbox.exec("rm", "-f", "/tmp/execute_result").wait()
except Exception:
pass
if result["status"] == "success":
# Create results for plots only - don't duplicate stdout as execute_result
results = []
# Add plots
for i, base64_img in enumerate(result.get("plots", [])):
results.append(ModalResult(
png=base64_img,
is_main_result=(i == 0) # First plot is main result
))
# Get stdout and stderr output for logs
stdout_output = result.get("stdout", "")
stderr_output = result.get("stderr", "")
# Return execution with stdout/stderr in logs, plots in results
# Don't add stdout to results to avoid duplication
return ModalExecution(stdout=stdout_output, stderr=stderr_output, error=None, results=results)
elif result["status"] == "error":
# Execution had an error
error_info = result["error"]
error_data = {
"name": error_info["name"],
"value": error_info["value"],
"traceback": error_info["traceback"]
}
return ModalExecution(stdout="", stderr="", error=error_data, results=[])
else:
raise RuntimeError(f"Unknown status from persistent session: {result['status']}")
except Exception as e:
# Handle session errors and other exceptions
logger.error(f"Error executing code in persistent session: {str(e)}")
# Reset persistent session on error
if self._persistent_session:
try:
self._persistent_session.terminate()
except Exception:
pass
self._persistent_session = None
error_data = {
"name": type(e).__name__,
"value": str(e),
"traceback": f"Traceback: {type(e).__name__}: {str(e)}"
}
return ModalExecution(error=error_data)
def run_shell(self, command: str, timeout: int =60) -> ModalExecution:
"""
Execute raw shell commands directly in the sandbox without Python wrapper
Args:
command: Shell command to execute
timeout: Timeout in seconds (default 60)
Returns:
ModalExecution object with shell output
"""
try:
if not self._sandbox:
raise RuntimeError("Sandbox not initialized")
logger.debug(f"Executing raw shell command: {command}")
# Use Modal's exec to run shell command directly
# Split command into parts for exec (simple approach for common commands)
if ' ' in command:
# For complex commands, use sh -c
result = self._sandbox.exec("sh", "-c", command, timeout=timeout)
else:
# For simple commands, run directly
result = self._sandbox.exec(command, timeout=timeout)
# Wait for completion
result.wait()
# Get output
stdout_output = ""
stderr_output = ""
try:
stdout_output = result.stdout.read() if result.stdout else ""
except Exception:
pass
try:
stderr_output = result.stderr.read() if result.stderr else ""
except Exception:
pass
# Check for errors based on return code
error_data = None
if result.returncode != 0:
error_data = {
"name": "ShellCommandError",
"value": f"Command '{command}' exited with code {result.returncode}",
"traceback": f"Command: {command}\nExit Code: {result.returncode}\nSTDERR: {stderr_output}"
}
logger.debug(f"Shell command completed with exit code: {result.returncode}")
return ModalExecution(
stdout=stdout_output,
stderr=stderr_output,
error=error_data,
results=[]
)
except Exception as e:
logger.error(f"Error executing shell command '{command}': {str(e)}")
# Return error execution
error_data = {
"name": type(e).__name__,
"value": str(e),
"traceback": f"Shell command failed: {command}\nError: {str(e)}"
}
return ModalExecution(
stdout="",
stderr="",
error=error_data,
results=[]
)
def get_info(self) -> ModalSandboxInfo:
"""Get sandbox info for countdown timer"""
return self._sandbox_info
def kill(self):
"""Terminate the sandbox and persistent session"""
try:
# Terminate persistent session first
if self._persistent_session:
try:
# Send terminate command via file
terminate_command = {"action": "terminate"}
with self._sandbox.open("/tmp/execute_command", "w") as f:
f.write(json.dumps(terminate_command))
except Exception:
pass # Ignore errors during graceful shutdown
try:
self._persistent_session.terminate()
except Exception:
pass # Ignore errors during forced termination
self._persistent_session = None
logger.info("Persistent session terminated")
# Terminate sandbox
if self._sandbox:
self._sandbox.terminate()
self._sandbox = None
logger.info("Modal sandbox terminated")
except Exception as e:
logger.error(f"Error terminating Modal sandbox: {e}")
def __del__(self):
"""Cleanup on deletion"""
self.kill()
def create_modal_sandbox(gpu_config: str = "cpu", gpu_count: int = 1, cpu_cores: float = 2.0,
memory_gb: float = 8.0, timeout: int = 300,
environment_vars: Dict[str, str] = None) -> ModalSandbox:
"""
Factory function to create Modal sandbox with specified configuration
Args:
gpu_config: GPU type ("cpu", "T4", "L4", "A100-40GB", "A100-80GB", "H100")
gpu_count: Number of GPUs (for future implementation)
cpu_cores: Number of CPU cores
memory_gb: Memory in GB
timeout: Timeout in seconds
environment_vars: Environment variables
Returns:
ModalSandbox instance
"""
memory_mb = int(memory_gb * 1024)
# For multi-GPU support (future implementation)
if gpu_count > 1:
print(f"Warning: Multi-GPU ({gpu_count}) not yet implemented, using single GPU")
return ModalSandbox(
gpu_config=gpu_config,
cpu_cores=cpu_cores,
memory_mb=memory_mb,
timeout=timeout,
environment_vars=environment_vars
) |