# =============================================================================
# Phishing Campaign Setup Assistant
# =============================================================================
# Description: A Gradio-based chatbot application using LangChain and OpenAI
# to guide users through setting up a phishing simulation campaign step-by-step.
#
# Requirements:
# - Python 3.x
# - Libraries: langchain, langchain_openai, langchain_community, gradio,
# python-dotenv, google-generativeai
# - Environment Variables (.env file):
# - OPENAI_API_KEY
# - GOOGLE_API_KEY
# - Data Files (in the same directory):
# - company_info.json
# - user_info.json
# =============================================================================
# --- 0. Required Imports ---
# Standard library imports
import os
import datetime
import json
import re
import base64
import tempfile
# Third-party imports for AI & LLMs
from dotenv import load_dotenv
from openai import OpenAI
from google import genai as google_genai
from google.genai import types as google_genai_types
from langchain.agents import create_openai_tools_agent, AgentExecutor
from langchain_openai import ChatOpenAI
from langchain_core.tools import StructuredTool
from langchain_core.messages import HumanMessage, AIMessage
from langchain import hub
from langchain_community.tools import DuckDuckGoSearchRun
# Third-party import for Web UI
import gradio as gr
# --- 1. Configuration and Initialization ---
# Load environment variables from a .env file
load_dotenv()
# Initialize the OpenAI client for the LangChain agent
# We use a low temperature (0.0) for predictable, task-oriented behavior.
llm = ChatOpenAI(model="gpt-4o", temperature=0.0)
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
# Initialize the Google GenAI Client for the image generation tool
# google_genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
genai_client = google_genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
# --- 2. Tool Definitions ---
# These functions define the actions (tools) the AI agent can perform.
def generate_image(prompt: str) -> dict:
"""
Generates an image based on a text prompt, saves it to 'generated_phishing_image.png'
in the current directory (overwriting previous images), and returns the absolute file path.
"""
# Fixed filename ensures replacement on subsequent generations.
output_filename = "generated_phishing_image.png"
print(f"INFO: Generating image with prompt: '{prompt}'")
try:
output = genai_client.models.generate_images(
prompt=prompt,
model="imagen-4.0-generate-preview-06-06",
config=google_genai_types.GenerateImagesConfig(
number_of_images=1,
aspect_ratio="16:9",
),
)
generated_img = output.generated_images[0].image
# Save the image to the fixed path in the current directory.
generated_img.save(output_filename)
# Get the absolute path for reliable referencing in the HTML.
absolute_image_path = os.path.abspath(output_filename)
print(f"INFO: Image saved to: {absolute_image_path}")
return {"status": "success", "image_path": absolute_image_path}
except Exception as e:
print(f"ERROR: Image generation failed: {e}")
return {"status": "error", "message": f"Image generation failed: {e}"}
def get_company_info() -> dict:
"""
Retrieves company information (name, logoUrl, departments, etc.) from company_info.json.
"""
print("INFO: Reading company_info.json")
try:
with open('company_info.json', 'r') as f:
data = json.load(f)
return {"status": "success", "data": data}
except FileNotFoundError:
return {"status": "error", "message": "company_info.json not found."}
except json.JSONDecodeError:
return {"status": "error", "message": "Error decoding company_info.json."}
def get_user_info() -> dict:
"""
Retrieves the current user's information (name, role, email) from user_info.json.
"""
print("INFO: Reading user_info.json")
try:
with open('user_info.json', 'r') as f:
data = json.load(f)
return {"status": "success", "data": data}
except FileNotFoundError:
return {"status": "error", "message": "user_info.json not found."}
except json.JSONDecodeError:
return {"status": "error", "message": "Error decoding user_info.json."}
def create_html_template(html_code: str) -> dict:
"""
Takes a complete HTML string, cleans it (removes newlines), and prepares it for preview.
"""
print("INFO: Formalizing agent-generated HTML template.")
# Clean HTML by removing newlines for compact storage/transmission
cleaned_html = html_code.replace("\n", "").replace("\r", "")
return {"status": "success", "template": cleaned_html}
def send_test_email(recipient: str, html_body: str) -> dict:
"""Simulates sending a test phishing email to a specified recipient."""
print(f"INFO: Test email sent to {recipient}")
return {"status": "success", "data": {"recipient": recipient}, "message": f"Test email sent to {recipient}."}
def get_or_create_employee_list(action: str, employee_data: list = None) -> dict:
"""Simulates managing employee lists (create, add, use_existing)."""
message = f"Action '{action}' on employee list was successful."
return {"status": "success", "data": {"action": action}, "message": message}
def select_target_group(group_type: str, values: list = None) -> dict:
"""
Selects the target group (all, department, individual). Includes error checking
to ensure 'values' are provided when necessary.
"""
if group_type == "all":
message = "The campaign will target all employees."
elif group_type == "department" and values:
message = f"Targeting departments: {', '.join(values)}."
elif group_type == "individual" and values:
message = f"Targeting individuals: {', '.join(values)}."
else:
# Handle cases where 'values' are missing or the group_type is unknown.
message = f"Error: Invalid selection for group type '{group_type}' or missing values."
return {"status": "success", "data": {"group_type": group_type, "targets": values}, "message": message}
def schedule_attack(date_time: str) -> dict:
"""Simulates scheduling the phishing campaign."""
return {"status": "success", "data": {"scheduled_for": date_time},
"message": f"Campaign scheduled for {date_time}."}
# --- 3. Agent and Prompt Configuration ---
# Assemble all functions into a list of StructuredTools for the agent
tools = [
StructuredTool.from_function(func=generate_image, name="GenerateImage",
description="Generates an image from a prompt and returns its local file path."),
StructuredTool.from_function(func=get_company_info, name="GetCompanyInfo",
description="Retrieves company information (including logoUrl and departments)."),
StructuredTool.from_function(func=get_user_info, name="GetUserInfo",
description="Retrieves the current user's information (including email)."),
StructuredTool.from_function(func=create_html_template, name="CreateHtmlTemplate",
description="Finalizes the phishing email's HTML code."),
StructuredTool.from_function(func=send_test_email, name="SendTestEmail",
description="Sends a test phishing email for review."),
StructuredTool.from_function(func=get_or_create_employee_list, name="ManageEmployeeList",
description="Manages the employee list for the campaign."),
StructuredTool.from_function(func=select_target_group, name="SelectTargetGroup",
description="Selects the target group for the campaign."),
StructuredTool.from_function(func=schedule_attack, name="ScheduleAttack",
description="Schedules the phishing campaign.")
]
# Pull a standard agent prompt template from the LangChain hub
prompt = hub.pull("hwchase17/openai-tools-agent")
# Define the master instructions for the AI agent (the "System Prompt")
SYSTEM_PROMPT = """
You are an AI assistant named Cbulwork, designed to set up phishing simulation campaigns. Your goal is to guide the user step-by-step with precision and clarity. The user has already been greeted, so you should start directly with the process.
**PROCESS:**
**Step 1: Gather Context & Suggest Scenario**
- Call `GetUserInfo` and `GetCompanyInfo`.
- Greet the user by name.
- If the user has NOT provided a topic, suggest 5 relevant scenarios based on company info.
- Await the user's confirmation of the scenario.
**Step 2: Choose Template Type**
- Ask the user to choose a template type: Text Only, Text + Photo, or Photo Only.
- Wait for their selection.
**Step 3: Template Design**
- Write a **highly detailed and convincing**, valid HTML code for the email based on the user's choice.
- **IMAGE & LOGO RULES (CRITICAL):**
- If 'Text + Photo' or 'Photo Only' was chosen:
1. Call `GenerateImage`. The prompt MUST be for a **flyer-style image with simple, bold text** related to the scenario (e.g., "A modern corporate flyer with the text 'Urgent Action Required: Update Your Password'").
2. Use the exact `image_path` returned by the tool in the `src` attribute of an `
` tag. **You MUST prefix the local path with `file:///` for the preview to work.**
- If "Text + Photo" was chosen, also include the `logoUrl` from `GetCompanyInfo` in a separate `
` tag.
- **CONTENT RULES:**
- The email body must have at least two convincing paragraphs.
- Generate a professional footer with fake details (address, contact info) for realism.
- Generate a compelling subject, personalized greeting ("{{recipient.name}}"), detailed body, footer, and a clear call-to-action.
- Do NOT include copyright lines.
- After writing the code, you MUST call `CreateHtmlTemplate` with the HTML as a single string.
**Step 4: Send Test Email**
- After approval, ask to send a test email. If yes, use `SendTestEmail` with the user's email.
**Step 5: Employee List**
- Ask for the list provision method (upload/manual). If manual, provide an example format (`Name,Email`). Call `ManageEmployeeList`.
**Step 6: Target Group Selection**
- Ask to target 'all', 'department', or 'individual'.
- If not 'all', ask for the specific names/departments (list available departments from `GetCompanyInfo`).
- Call `SelectTargetGroup` with the correct `group_type` and `values`.
**Step 7: Schedule Campaign**
- Ask for a future launch date/time (`dd/mm/yyyy` format). Call `ScheduleAttack`.
**Step 8: Final Summary & Confirmation**
- Provide a complete summary. Ask for final confirmation. After confirmation, ask if there is anything else.
"""
# Insert the system prompt into the template
prompt.messages[0].prompt.template = SYSTEM_PROMPT
# Create the agent (LLM + Tools + Prompt)
agent = create_openai_tools_agent(llm, tools, prompt)
# Create the agent executor (the runtime for the agent)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True, # Set to True to see the agent's thought process and tool usage in the console
handle_parsing_errors=True,
max_iterations=15,
return_intermediate_steps=True # Required to capture tool output for the UI
)
# --- 4. Core Application Logic ---
def run_agent_turn(user_input: str, chat_history: list) -> dict:
"""
Processes one turn of the conversation: sends input to the agent, executes tools,
and collects the results (response, HTML, image path, and tool calls).
"""
# Convert Gradio chat history format to LangChain message format
langchain_messages = [
HumanMessage(content=msg["content"]) if msg["role"] == "user" else AIMessage(content=msg["content"])
for msg in chat_history
]
# Invoke the agent
response = agent_executor.invoke({
"input": user_input,
"chat_history": langchain_messages
})
agent_output = response.get("output", "Sorry, an error occurred.")
# Initialize variables to capture outputs from the agent's steps
html_to_preview = ""
generated_image_path = None
function_calls = []
intermediate_steps = response.get("intermediate_steps", [])
# Process the steps the agent took
for action, tool_output in intermediate_steps:
# Log the tool call for the JSON output box
function_calls.append({
"tool_name": action.tool,
"tool_args": action.tool_input,
"tool_output": tool_output,
})
# Capture the HTML output if the CreateHtmlTemplate tool was used
if action.tool == "CreateHtmlTemplate" and isinstance(tool_output, dict):
html_to_preview = tool_output.get("template", "")
# Capture the image path if the GenerateImage tool was used successfully
if action.tool == "GenerateImage" and tool_output.get("status") == "success":
generated_image_path = tool_output.get("image_path")
# Update the chat history
updated_chat_history = chat_history + [
{"role": "user", "content": user_input},
{"role": "assistant", "content": agent_output}
]
# Return a structured dictionary with all results
return {
"agent_response": agent_output,
"html_preview": html_to_preview,
"function_calls": function_calls,
"updated_chat_history": updated_chat_history,
"generated_image_preview": generated_image_path
}
def process_input_for_gradio(user_input: str, chat_history: list) -> tuple:
"""
Event handler for the Gradio UI. Calls the core agent logic and returns
the outputs in the order expected by the Gradio outputs list.
"""
if not user_input.strip():
# Don't process empty input
return chat_history, "", None, None
# Run the agent turn
json_output = run_agent_turn(user_input, chat_history)
# Optional: Print the backend output to the console for debugging
print(f"--- Backend JSON Output ---\n{json.dumps(json_output, indent=2)}\n--------------------------")
# Return the data in the order of the Gradio outputs=[...] list
return (
json_output["updated_chat_history"],
json_output["html_preview"],
json_output["function_calls"],
json_output["generated_image_preview"]
)
# --- 5. Gradio User Interface Definition ---
# Define the UI layout using Gradio Blocks
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky")) as demo:
gr.Markdown("## Phishing Campaign Setup Assistant")
gr.Markdown("I will guide you step-by-step to create and schedule a new phishing campaign.")
with gr.Row():
# Left Column: Chat Interface
with gr.Column(scale=1):
welcome_message = "Hello, I'm your AI phishing assistant. Send a message to get started."
chatbot = gr.Chatbot(
value=[{"role": "assistant", "content": welcome_message}],
label="Conversation",
height=600,
type="messages" # Ensures we use the modern {'role': '...', 'content': '...'} format
)
user_input = gr.Textbox(
placeholder="Send a message to continue...",
label="Your Message",
scale=12
)
# Right Column: Previews and Debugging
with gr.Column(scale=1):
gr.Markdown("### Email Template Preview")
html_block = gr.HTML(label="HTML Preview")
gr.Markdown("### Generated Image Preview")
# Added an Image component to display the generated flyer/image
image_preview_box = gr.Image(label="Image Preview", interactive=False)
gr.Markdown("### Function Call Output (Debugging)")
json_requests_box = gr.JSON(label="Function 'Requests' Output")
# Connect the user input submission to the event handler
user_input.submit(
fn=process_input_for_gradio,
inputs=[user_input, chatbot],
# Ensure outputs match the return tuple of process_input_for_gradio
outputs=[chatbot, html_block, json_requests_box, image_preview_box]
)
# Clear the input box after submission
user_input.submit(lambda: "", None, user_input)
# --- 6. Application Launch ---
if __name__ == "__main__":
# Launch the Gradio web server
print("Launching Phishing Campaign Setup Assistant UI...")
demo.launch(debug=False)