Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,687 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from Live_audio import GeminiHandler
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from langdetect import detect
|
5 |
+
import asyncio
|
6 |
+
import gradio as gr
|
7 |
+
import google.generativeai as genai
|
8 |
+
import os
|
9 |
+
import time
|
10 |
+
import gradio as gr
|
11 |
+
from datetime import datetime
|
12 |
+
import langdetect
|
13 |
+
import RAG_Domain_know_doc
|
14 |
+
from web_search import search_autism
|
15 |
+
from RAG import rag_autism
|
16 |
+
from openai import OpenAI
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
import Old_Document
|
19 |
+
import User_Specific_Documents
|
20 |
+
import asyncio
|
21 |
+
import base64
|
22 |
+
import time
|
23 |
+
from io import BytesIO
|
24 |
+
from dotenv import load_dotenv
|
25 |
+
load_dotenv()
|
26 |
+
from google.genai import types
|
27 |
+
from google.genai.types import (
|
28 |
+
LiveConnectConfig,
|
29 |
+
SpeechConfig,
|
30 |
+
VoiceConfig,
|
31 |
+
PrebuiltVoiceConfig,
|
32 |
+
Content,
|
33 |
+
Part,
|
34 |
+
)
|
35 |
+
import gradio as gr
|
36 |
+
import numpy as np
|
37 |
+
import websockets
|
38 |
+
from dotenv import load_dotenv
|
39 |
+
from fastrtc import (
|
40 |
+
AsyncAudioVideoStreamHandler,
|
41 |
+
Stream,
|
42 |
+
WebRTC,
|
43 |
+
get_cloudflare_turn_credentials_async,
|
44 |
+
wait_for_item,
|
45 |
+
)
|
46 |
+
from google import genai
|
47 |
+
from gradio.utils import get_space
|
48 |
+
from PIL import Image
|
49 |
+
|
50 |
+
# ------------------------------------------
|
51 |
+
import asyncio
|
52 |
+
import base64
|
53 |
+
import json
|
54 |
+
import os
|
55 |
+
import pathlib
|
56 |
+
import gradio as gr
|
57 |
+
import google.generativeai as genai
|
58 |
+
import os
|
59 |
+
import time
|
60 |
+
from typing import AsyncGenerator, Literal
|
61 |
+
|
62 |
+
import gradio as gr
|
63 |
+
import numpy as np
|
64 |
+
from dotenv import load_dotenv
|
65 |
+
from fastapi import FastAPI
|
66 |
+
from fastapi.responses import HTMLResponse
|
67 |
+
from fastrtc import (
|
68 |
+
AsyncStreamHandler,
|
69 |
+
Stream,
|
70 |
+
get_cloudflare_turn_credentials_async,
|
71 |
+
wait_for_item,
|
72 |
+
)
|
73 |
+
from google import genai
|
74 |
+
from google.genai.types import (
|
75 |
+
LiveConnectConfig,
|
76 |
+
PrebuiltVoiceConfig,
|
77 |
+
SpeechConfig,
|
78 |
+
VoiceConfig,
|
79 |
+
)
|
80 |
+
from gradio.utils import get_space
|
81 |
+
from pydantic import BaseModel
|
82 |
+
# ------------------------------------------------
|
83 |
+
import os
|
84 |
+
import gradio as gr
|
85 |
+
import google.generativeai as genai
|
86 |
+
import os
|
87 |
+
import time
|
88 |
+
import io
|
89 |
+
import asyncio
|
90 |
+
from pydub import AudioSegment
|
91 |
+
DEEPINFRA_API_KEY = "285LUJulGIprqT6hcPhiXtcrphU04FG4"
|
92 |
+
|
93 |
+
# Gemini: google-genai
|
94 |
+
from google import genai
|
95 |
+
# ---------------------------------------------------
|
96 |
+
# VAD imports from reference code
|
97 |
+
import collections
|
98 |
+
import webrtcvad
|
99 |
+
import fastrtc
|
100 |
+
import time
|
101 |
+
|
102 |
+
# helper functions
|
103 |
+
|
104 |
+
from prompt_template import (
|
105 |
+
Prompt_template_translation,
|
106 |
+
Prompt_template_LLM_Generation,
|
107 |
+
Prompt_template_Reranker,
|
108 |
+
Prompt_template_Wisal,
|
109 |
+
Prompt_template_Halluciations,
|
110 |
+
Prompt_template_paraphrasing,
|
111 |
+
Prompt_template_Translate_to_original,
|
112 |
+
Prompt_template_relevance,
|
113 |
+
Prompt_template_User_document_prompt
|
114 |
+
)
|
115 |
+
from query_utils import process_query_for_rewrite, get_non_autism_response
|
116 |
+
|
117 |
+
GEMINI_API_KEY="AIzaSyCUCivstFpC9pq_jMHMYdlPrmh9Bx97dFo"
|
118 |
+
|
119 |
+
TAVILY_API_KEY="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"
|
120 |
+
|
121 |
+
WEAVIATE_URL="yorcqe2sqswhcaivxvt9a.c0.us-west3.gcp.weaviate.cloud"
|
122 |
+
|
123 |
+
WEAVIATE_API_KEY="d2d0VGdZQTBmdTFlOWdDZl9tT2h3WDVWd1NpT1dQWHdGK0xjR1hYeWxicUxHVnFRazRUSjY2VlRUVlkwPV92MjAw"
|
124 |
+
|
125 |
+
DEEPINFRA_API_KEY="285LUJulGIprqT6hcPhiXtcrphU04FG4"
|
126 |
+
|
127 |
+
DEEPINFRA_BASE_URL="https://api.deepinfra.com/v1/openai"
|
128 |
+
# API Keys and Constants
|
129 |
+
env = os.getenv("ENVIRONMENT", "production")
|
130 |
+
openai = OpenAI(
|
131 |
+
api_key=DEEPINFRA_API_KEY,
|
132 |
+
base_url="https://api.deepinfra.com/v1/openai",
|
133 |
+
)
|
134 |
+
SESSION_ID = "default"
|
135 |
+
|
136 |
+
pending_clarifications = {}
|
137 |
+
|
138 |
+
def call_llm(model: str, messages: list[dict], temperature: float = 0.0, **kwargs) -> str:
|
139 |
+
resp = openai.chat.completions.create(
|
140 |
+
model=model,
|
141 |
+
messages=messages,
|
142 |
+
temperature=temperature,
|
143 |
+
**kwargs
|
144 |
+
)
|
145 |
+
return resp.choices[0].message.content.strip()
|
146 |
+
|
147 |
+
def is_greeting(text: str) -> bool:
|
148 |
+
return bool(re.search(r"\b(hi|hello|hey|good (morning|afternoon|evening))\b", text, re.I))
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
def process_query(query: str, first_turn: bool = False, session_id: str = "default"):
|
153 |
+
intro = ""
|
154 |
+
process_log = []
|
155 |
+
|
156 |
+
# Check if user is responding to a clarification prompt
|
157 |
+
if session_id in pending_clarifications:
|
158 |
+
if query.strip().lower() == "yes":
|
159 |
+
corrected_query = pending_clarifications.pop(session_id)
|
160 |
+
process_log.append(f"User confirmed: {corrected_query}")
|
161 |
+
return process_autism_pipeline(corrected_query, process_log, intro)
|
162 |
+
else:
|
163 |
+
pending_clarifications.pop(session_id)
|
164 |
+
redirect = "Hello I'm Wisal, an AI assistant developed by Compumacy AI, and a knowledgeable Autism specialist.\nIf you have any question related to autism please submit a question specifically about autism."
|
165 |
+
process_log.append("User rejected clarification.")
|
166 |
+
_save_process_log(process_log)
|
167 |
+
return redirect
|
168 |
+
|
169 |
+
if first_turn and (not query or query.strip() == ""):
|
170 |
+
intro = "Hello! I'm Wisal, an AI assistant developed by Compumacy AI, specializing in Autism Spectrum Disorders. How can I help you today?"
|
171 |
+
process_log.append(intro)
|
172 |
+
_save_process_log(process_log)
|
173 |
+
return intro
|
174 |
+
|
175 |
+
if is_greeting(query):
|
176 |
+
greeting = intro + "Hello! I'm Wisal, your AI assistant developed by Compumacy AI. How can I help you today?"
|
177 |
+
process_log.append(f"Greeting detected.\n{greeting}")
|
178 |
+
_save_process_log(process_log)
|
179 |
+
return greeting
|
180 |
+
|
181 |
+
# Process query with the new 3-tuple return
|
182 |
+
corrected_query, is_autism_related, rewritten_query = process_query_for_rewrite(query)
|
183 |
+
process_log.append(f"Original Query: {query}")
|
184 |
+
process_log.append(f"Corrected Query: {corrected_query}")
|
185 |
+
process_log.append(f"Relevance Check: {'RELATED' if is_autism_related else 'NOT RELATED'}")
|
186 |
+
|
187 |
+
if rewritten_query:
|
188 |
+
process_log.append(f"Rewritten Query: {rewritten_query}")
|
189 |
+
|
190 |
+
# If not autism-related, show clarification with rewritten question
|
191 |
+
if not is_autism_related:
|
192 |
+
redirect_message = "Hello I'm Wisal, an AI assistant developed by Compumacy AI, and a knowledgeable Autism specialist.\nIf you have any question related to autism please submit a question specifically about autism."
|
193 |
+
|
194 |
+
clarification = f"""Your query was not clearly related to autism. Do you mean:"{rewritten_query}"?"""
|
195 |
+
|
196 |
+
pending_clarifications[session_id] = rewritten_query
|
197 |
+
process_log.append(f"Clarification Prompted: {clarification}")
|
198 |
+
_save_process_log(process_log)
|
199 |
+
return clarification
|
200 |
+
|
201 |
+
return process_autism_pipeline(query,corrected_query, process_log, intro)
|
202 |
+
|
203 |
+
def process_autism_pipeline(query,corrected_query, process_log, intro):
|
204 |
+
web_search_resp = asyncio.run(search_autism(corrected_query))
|
205 |
+
web_answer = web_search_resp.get("answer", "")
|
206 |
+
process_log.append(f"Web Search: {web_answer}")
|
207 |
+
|
208 |
+
gen_prompt = Prompt_template_LLM_Generation.format(new_query=corrected_query)
|
209 |
+
generated = call_llm(
|
210 |
+
model="Qwen/Qwen3-32B",
|
211 |
+
messages=[{"role": "user", "content": gen_prompt}],
|
212 |
+
reasoning_effort="none"
|
213 |
+
)
|
214 |
+
process_log.append(f"LLM Generated: {generated}")
|
215 |
+
|
216 |
+
rag_resp = asyncio.run(rag_autism(corrected_query, top_k=3))
|
217 |
+
rag_contexts = rag_resp.get("answer", [])
|
218 |
+
process_log.append(f"RAG Contexts: {rag_contexts}")
|
219 |
+
|
220 |
+
answers_list = f"[1] {generated}\n[2] {web_answer}\n" + "\n".join(f"[{i+3}] {c}" for i, c in enumerate(rag_contexts))
|
221 |
+
rerank_prompt = Prompt_template_Reranker.format(new_query=corrected_query, answers_list=answers_list)
|
222 |
+
reranked = call_llm(
|
223 |
+
model="Qwen/Qwen3-32B",
|
224 |
+
messages=[{"role": "user", "content": rerank_prompt}],
|
225 |
+
reasoning_effort="none"
|
226 |
+
)
|
227 |
+
process_log.append(f"Reranked: {reranked}")
|
228 |
+
|
229 |
+
wisal_prompt = Prompt_template_Wisal.format(new_query=corrected_query, document=reranked)
|
230 |
+
wisal = call_llm(
|
231 |
+
model="Qwen/Qwen3-32B",
|
232 |
+
messages=[{"role": "user", "content": wisal_prompt}],
|
233 |
+
reasoning_effort="none"
|
234 |
+
)
|
235 |
+
process_log.append(f"Wisal Answer: {wisal}")
|
236 |
+
|
237 |
+
halluc_prompt = Prompt_template_Halluciations.format(
|
238 |
+
new_query=corrected_query,
|
239 |
+
answer=wisal,
|
240 |
+
document=generated
|
241 |
+
)
|
242 |
+
halluc = call_llm(
|
243 |
+
model="Qwen/Qwen3-32B",
|
244 |
+
messages=[{"role": "user", "content": halluc_prompt}],
|
245 |
+
reasoning_effort="none"
|
246 |
+
)
|
247 |
+
process_log.append(f"Hallucination Score: {halluc}")
|
248 |
+
score = int(halluc.split("Score: ")[-1]) if "Score: " in halluc else 3
|
249 |
+
|
250 |
+
if score in (2, 3):
|
251 |
+
paraphrased = call_llm(
|
252 |
+
model="Qwen/Qwen3-32B",
|
253 |
+
messages=[{"role": "user", "content": Prompt_template_paraphrasing.format(document=generated)}],
|
254 |
+
reasoning_effort="none"
|
255 |
+
)
|
256 |
+
wisal = call_llm(
|
257 |
+
model="Qwen/Qwen3-32B",
|
258 |
+
messages=[{"role": "user", "content": Prompt_template_Wisal.format(new_query=corrected_query, document=paraphrased)}],
|
259 |
+
reasoning_effort="none"
|
260 |
+
)
|
261 |
+
process_log.append(f"Paraphrased Wisal: {wisal}")
|
262 |
+
|
263 |
+
try:
|
264 |
+
detected_lang = detect(query)
|
265 |
+
except:
|
266 |
+
detected_lang = "en"
|
267 |
+
|
268 |
+
|
269 |
+
is_english_text = bool(re.fullmatch(r"[A-Za-z0-9 .,?;:'\"!()\-]+", query))
|
270 |
+
|
271 |
+
# Decide whether to translate
|
272 |
+
needs_translation = detected_lang != "en" or not is_english_text
|
273 |
+
|
274 |
+
if needs_translation:
|
275 |
+
result = call_llm(
|
276 |
+
model="Qwen/Qwen3-32B",
|
277 |
+
messages=[{
|
278 |
+
"role": "user",
|
279 |
+
"content": Prompt_template_Translate_to_original.format(query=query, document=wisal)
|
280 |
+
}],
|
281 |
+
reasoning_effort="none"
|
282 |
+
)
|
283 |
+
process_log.append(f"Translated Back: {result}")
|
284 |
+
else:
|
285 |
+
result = wisal
|
286 |
+
process_log.append(f"Final Result: {result}")
|
287 |
+
rtl_languages = ["ar", "fa", "ur", "he"] # Arabic, Persian, Urdu, Hebrew
|
288 |
+
text_dir = "rtl" if detected_lang in rtl_languages else "ltr"
|
289 |
+
# Wrap result in direction-aware HTML
|
290 |
+
wrapped_result = f'<div dir="{text_dir}">{result}</div>'
|
291 |
+
_save_process_log(process_log)
|
292 |
+
return intro + wrapped_result
|
293 |
+
|
294 |
+
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
def _save_process_log(log_lines, filename="process_output.txt"):
|
299 |
+
import datetime
|
300 |
+
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
|
301 |
+
os.makedirs(logs_dir, exist_ok=True)
|
302 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
303 |
+
log_filename = os.path.join(logs_dir, f"log_{timestamp}.txt")
|
304 |
+
with open(log_filename, "w", encoding="utf-8") as f:
|
305 |
+
for line in log_lines:
|
306 |
+
f.write(str(line) + "\n\n")
|
307 |
+
|
308 |
+
def _save_process_log(log_lines, filename="process_output.txt"):
|
309 |
+
import datetime
|
310 |
+
import os
|
311 |
+
# Ensure logs directory exists
|
312 |
+
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
|
313 |
+
os.makedirs(logs_dir, exist_ok=True)
|
314 |
+
# Unique filename per question (timestamped)
|
315 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S_%f")
|
316 |
+
log_filename = os.path.join(logs_dir, f"log_{timestamp}.txt")
|
317 |
+
try:
|
318 |
+
with open(log_filename, "w", encoding="utf-8") as f:
|
319 |
+
for line in log_lines:
|
320 |
+
f.write(str(line) + "\n\n")
|
321 |
+
except Exception as e:
|
322 |
+
pass
|
323 |
+
|
324 |
+
|
325 |
+
# Gradio UI for main pipeline, RAG_Domain_know_doc, and User_Specific_Documents , Old_Document
|
326 |
+
def main_pipeline_interface(query):
|
327 |
+
return process_query(query, first_turn=True)
|
328 |
+
|
329 |
+
def main_pipeline_with_doc_and_history(query, doc_file, doc_type, history):
|
330 |
+
response = main_pipeline_with_doc(query, doc_file, doc_type)
|
331 |
+
updated_history = history + f"\nUser: {query}\nWisal: {response}\n"
|
332 |
+
return response, updated_history
|
333 |
+
|
334 |
+
def main_pipeline_with_doc(query, doc_file, doc_type):
|
335 |
+
# If no document, use main pipeline
|
336 |
+
if doc_file is None or doc_type == "None":
|
337 |
+
return process_query(query, first_turn=True)
|
338 |
+
|
339 |
+
safe_filename = os.path.basename(getattr(doc_file, 'name', str(doc_file)))
|
340 |
+
upload_dir = os.path.join(os.path.dirname(__file__), "uploaded_docs")
|
341 |
+
os.makedirs(upload_dir, exist_ok=True)
|
342 |
+
|
343 |
+
save_path = os.path.join(upload_dir, safe_filename)
|
344 |
+
|
345 |
+
# 💡 Check if doc_file is file-like (has `.read()`) or path-like (str or NamedString)
|
346 |
+
if hasattr(doc_file, 'read'):
|
347 |
+
# File-like object
|
348 |
+
file_bytes = doc_file.read()
|
349 |
+
else:
|
350 |
+
# It's a path (NamedString), read from file path
|
351 |
+
with open(str(doc_file), 'rb') as f:
|
352 |
+
file_bytes = f.read()
|
353 |
+
|
354 |
+
# Save the file content
|
355 |
+
with open(save_path, "wb") as f:
|
356 |
+
f.write(file_bytes)
|
357 |
+
|
358 |
+
|
359 |
+
# Route to correct document handler
|
360 |
+
if doc_type == "Knowledge Document":
|
361 |
+
status = RAG_Domain_know_doc.ingest_file(save_path)
|
362 |
+
answer = RAG_Domain_know_doc.answer_question(query)
|
363 |
+
return f"[Knowledge Document Uploaded]\n{status}\n\n{answer}"
|
364 |
+
elif doc_type == "User-Specific Document":
|
365 |
+
status = User_Specific_Documents.ingest_file(save_path)
|
366 |
+
answer = User_Specific_Documents.answer_question(query)
|
367 |
+
return f"[User-Specific Document Uploaded]\n{status}\n\n{answer}"
|
368 |
+
elif doc_type == "Old Document":
|
369 |
+
status = Old_Document.ingest_file(save_path)
|
370 |
+
answer = Old_Document.answer_question(query)
|
371 |
+
return f"[Old Document Uploaded]\n{status}\n\n{answer}"
|
372 |
+
elif doc_type == "New Documrnt":
|
373 |
+
status = User_Specific_Documents.ingest_file(save_path)
|
374 |
+
answer = User_Specific_Documents.answer_question(query)
|
375 |
+
return f"[New Documrnt]\n{status}\n\n{answer}"
|
376 |
+
|
377 |
+
else:
|
378 |
+
return "Invalid document type."
|
379 |
+
|
380 |
+
def pipeline_with_history(message, doc_file, doc_type, history):
|
381 |
+
if not message.strip():
|
382 |
+
return history, ""
|
383 |
+
response = main_pipeline_with_doc(message, doc_file, doc_type)
|
384 |
+
history = history + [[message, response]]
|
385 |
+
return history, ""
|
386 |
+
|
387 |
+
import gradio as gr
|
388 |
+
import google.generativeai as genai
|
389 |
+
import os
|
390 |
+
import time
|
391 |
+
|
392 |
+
# Function to transcribe audio
|
393 |
+
def transcribe_audio(audio_filepath):
|
394 |
+
api_key = "AIzaSyC68cQzvDYEnas6u-5ABgbOSeJLmIKKpP8"
|
395 |
+
if audio_filepath is None:
|
396 |
+
return "No audio provided. Please record or upload an audio file first."
|
397 |
+
if not api_key:
|
398 |
+
return "API Key is missing. Please provide your Google AI API key."
|
399 |
+
try:
|
400 |
+
genai.configure(api_key=api_key)
|
401 |
+
|
402 |
+
model = genai.GenerativeModel(model_name="models/gemini-2.0-flash") # Get the model you want to use
|
403 |
+
|
404 |
+
print(f"Transcribing audio file: {audio_filepath}")
|
405 |
+
yield "Uploading audio file..."
|
406 |
+
|
407 |
+
# Upload the audio file
|
408 |
+
audio_file = genai.upload_file(path=audio_filepath)
|
409 |
+
|
410 |
+
# Check the processing status of the uploaded file
|
411 |
+
while audio_file.state.name == "PROCESSING":
|
412 |
+
time.sleep(2) # Wait for 2 seconds before checking again
|
413 |
+
audio_file = genai.get_file(audio_file.name)
|
414 |
+
|
415 |
+
if audio_file.state.name == "FAILED":
|
416 |
+
return "[ERROR] Audio file processing failed."
|
417 |
+
|
418 |
+
yield "Audio uploaded. Transcribing..."
|
419 |
+
|
420 |
+
# Request transcription from the model
|
421 |
+
response = model.generate_content(
|
422 |
+
["Please transcribe this audio recording.", audio_file],
|
423 |
+
request_options={"timeout": 120} # Set a timeout for the request
|
424 |
+
)
|
425 |
+
|
426 |
+
query = response.text if response and response.text else "Transcription failed. The response was empty."
|
427 |
+
yield query
|
428 |
+
except Exception as e:
|
429 |
+
print(f"An error occurred during transcription: {e}")
|
430 |
+
yield f"[ERROR] An unexpected error occurred: {e}"
|
431 |
+
|
432 |
+
def unified_handler(user_text, audio_file, chat_history):
|
433 |
+
chat_history = chat_history or []
|
434 |
+
msg_from_user = None
|
435 |
+
|
436 |
+
if user_text and user_text.strip():
|
437 |
+
msg_from_user = user_text
|
438 |
+
elif audio_file:
|
439 |
+
transcription = None
|
440 |
+
gen = transcribe_audio(audio_file)
|
441 |
+
try:
|
442 |
+
while True:
|
443 |
+
out = next(gen)
|
444 |
+
# Optional: Show progress in chat, if you want
|
445 |
+
if not out.startswith("[ERROR]"):
|
446 |
+
last_out = out
|
447 |
+
except StopIteration as e:
|
448 |
+
# If generator returns a value, it's in e.value
|
449 |
+
transcription = e.value if e.value else last_out
|
450 |
+
if transcription:
|
451 |
+
msg_from_user = transcription
|
452 |
+
|
453 |
+
if msg_from_user:
|
454 |
+
chat_history.append(("User", msg_from_user))
|
455 |
+
wisal_reply = process_query(msg_from_user)
|
456 |
+
chat_history.append(("Wisal", wisal_reply))
|
457 |
+
return chat_history, "", None
|
458 |
+
|
459 |
+
return chat_history, "", None
|
460 |
+
|
461 |
+
|
462 |
+
import gradio as gr
|
463 |
+
import asyncio
|
464 |
+
|
465 |
+
# Your process_query, transcribe_audio, and text_to_speech_ui functions should exist.
|
466 |
+
|
467 |
+
def wisal_handler(user_text, audio_file, chat_history):
|
468 |
+
# If user typed a message
|
469 |
+
if user_text and user_text.strip():
|
470 |
+
chat_history = chat_history or []
|
471 |
+
response = process_query(user_text)
|
472 |
+
chat_history.append(("User", user_text))
|
473 |
+
chat_history.append(("Wisal", response))
|
474 |
+
return chat_history, "", None # Clear input box
|
475 |
+
|
476 |
+
# If user provided audio
|
477 |
+
if audio_file:
|
478 |
+
transcription = None
|
479 |
+
gen = transcribe_audio(audio_file)
|
480 |
+
for out in gen:
|
481 |
+
if isinstance(out, str) and out.startswith("Uploading"):
|
482 |
+
continue
|
483 |
+
if isinstance(out, str) and not out.startswith("[ERROR]"):
|
484 |
+
transcription = out
|
485 |
+
if isinstance(out, str) and out.startswith("[ERROR]"):
|
486 |
+
chat_history.append(("System", out))
|
487 |
+
return chat_history, "", None
|
488 |
+
if transcription:
|
489 |
+
chat_history.append(("User", transcription)) # Show transcription!
|
490 |
+
wisal_reply = process_query(transcription)
|
491 |
+
chat_history.append(("Wisal", wisal_reply))
|
492 |
+
return chat_history, "", None
|
493 |
+
|
494 |
+
|
495 |
+
return chat_history, "", None # Nothing sent
|
496 |
+
|
497 |
+
|
498 |
+
# Make sure to escape backslashes in the file path (use raw strings or forward slashes)
|
499 |
+
image_path = r"C:\Users\Fouda\OneDrive\Desktop\Aya\Compumacy-Logo-Trans2.png" # Using a raw string
|
500 |
+
|
501 |
+
with gr.Blocks(title="Wisal Chatbot", theme='Yntec/HaleyCH_Theme_craiyon_alt') as demo:
|
502 |
+
chat_history = gr.State([])
|
503 |
+
|
504 |
+
# Add Image (local path)
|
505 |
+
with gr.Row():
|
506 |
+
gr.Image(value=image_path, show_label=False, container=False, height=100)
|
507 |
+
|
508 |
+
gr.Markdown("# 🤖 Wisal: Autism AI Assistant")
|
509 |
+
|
510 |
+
gr.CheckboxGroup(["Doctor", "Patient"], label="Checkbox Group")
|
511 |
+
chatbot = gr.Chatbot(label="Wisal Chat", height=500)
|
512 |
+
with gr.Row():
|
513 |
+
user_input = gr.Textbox(placeholder="Type your question here...", label="", lines=1)
|
514 |
+
audio_input = gr.Audio(
|
515 |
+
sources=["microphone", "upload"],
|
516 |
+
type="filepath",
|
517 |
+
label="Record or Upload Audio"
|
518 |
+
)
|
519 |
+
send_btn = gr.Button("Send", variant="primary")
|
520 |
+
|
521 |
+
|
522 |
+
send_btn.click(
|
523 |
+
fn=wisal_handler,
|
524 |
+
inputs=[user_input, audio_input, chat_history],
|
525 |
+
outputs=[chatbot, user_input, audio_input],
|
526 |
+
)
|
527 |
+
|
528 |
+
with gr.Row():
|
529 |
+
audio_output = gr.Audio(label="TTS Audio Output", interactive=True)
|
530 |
+
send_btn.click(
|
531 |
+
fn=wisal_handler,
|
532 |
+
inputs=[user_input, audio_input, chat_history],
|
533 |
+
outputs=[chatbot, user_input, audio_output],
|
534 |
+
api_name="wisal_handler"
|
535 |
+
)
|
536 |
+
|
537 |
+
|
538 |
+
with gr.Row() as row2:
|
539 |
+
with gr.Column():
|
540 |
+
webrtc2 = WebRTC(
|
541 |
+
label="Live Chat",
|
542 |
+
modality="audio",
|
543 |
+
mode="send-receive",
|
544 |
+
elem_id="audio-source",
|
545 |
+
rtc_configuration=get_cloudflare_turn_credentials_async,
|
546 |
+
icon="https://www.gstatic.com/lamda/images/gemini_favicon_f069958c85030456e93de685481c559f160ea06b.png",
|
547 |
+
pulse_color="rgb(255, 255, 255)",
|
548 |
+
icon_button_color="rgb(255, 255, 255)",
|
549 |
+
)
|
550 |
+
webrtc2.stream(
|
551 |
+
GeminiHandler(),
|
552 |
+
inputs=[webrtc2],
|
553 |
+
outputs=[webrtc2],
|
554 |
+
time_limit=180 if get_space() else None,
|
555 |
+
concurrency_limit=2 if get_space() else None,
|
556 |
+
)
|
557 |
+
|
558 |
+
doc_file = gr.File(label="📎 Upload Document (PDF, DOCX, TXT)", file_types=[".pdf", ".docx", ".txt"])
|
559 |
+
|
560 |
+
doc_type = gr.Radio(
|
561 |
+
["None", "Knowledge Document", "User-Specific Document"],
|
562 |
+
value="None",
|
563 |
+
label="Document Type"
|
564 |
+
)
|
565 |
+
|
566 |
+
user_doc_option = gr.Radio(
|
567 |
+
["New Document", "Old Document"],
|
568 |
+
label="Select User Document Type",
|
569 |
+
visible=False
|
570 |
+
)
|
571 |
+
|
572 |
+
def toggle_user_doc_visibility(selected_type):
|
573 |
+
return gr.update(visible=(selected_type == "User-Specific Document"))
|
574 |
+
|
575 |
+
doc_type.change(
|
576 |
+
toggle_user_doc_visibility,
|
577 |
+
inputs=doc_type,
|
578 |
+
outputs=user_doc_option
|
579 |
+
)
|
580 |
+
|
581 |
+
send_btn.click(
|
582 |
+
fn=pipeline_with_history,
|
583 |
+
inputs=[user_input, doc_file, doc_type, chatbot],
|
584 |
+
outputs=[chatbot, user_input]
|
585 |
+
)
|
586 |
+
|
587 |
+
clear_btn = gr.Button("Clear Chat", elem_id="clear-button")
|
588 |
+
clear_btn.click(lambda: [], outputs=[chatbot])
|
589 |
+
|
590 |
+
# Add custom theme CSS to the app
|
591 |
+
theme_css = """
|
592 |
+
/* Logo Row */
|
593 |
+
#logo-row {
|
594 |
+
display: flex;
|
595 |
+
justify-content: center;
|
596 |
+
align-items: center;
|
597 |
+
padding: 1rem;
|
598 |
+
background-color: #222222; /* Dark gray background for the logo row */
|
599 |
+
}
|
600 |
+
|
601 |
+
#logo-row img {
|
602 |
+
max-width: 300px;
|
603 |
+
object-fit: contain;
|
604 |
+
}
|
605 |
+
|
606 |
+
/* Send Button */
|
607 |
+
#send-button {
|
608 |
+
background-color: #f44336; en color for the Send button */
|
609 |
+
color: white;
|
610 |
+
font-size: 16px;
|
611 |
+
padding: 10px 24px;
|
612 |
+
border: none;
|
613 |
+
border-radius: 5px;
|
614 |
+
cursor: pointer;
|
615 |
+
}
|
616 |
+
|
617 |
+
#send-button:hover {
|
618 |
+
background-color: #e53935;
|
619 |
+
}
|
620 |
+
|
621 |
+
/* Clear Button */
|
622 |
+
#clear-button {
|
623 |
+
background-color: #f44336; /* Red color for the Clear button */
|
624 |
+
color: white;
|
625 |
+
font-size: 16px;
|
626 |
+
padding: 10px 24px;
|
627 |
+
border: none;
|
628 |
+
border-radius: 5px;
|
629 |
+
cursor: pointer;
|
630 |
+
}
|
631 |
+
|
632 |
+
#clear-button:hover {
|
633 |
+
background-color: #e53935; /* Darker red on hover */
|
634 |
+
}
|
635 |
+
|
636 |
+
/* Main Container Background */
|
637 |
+
.gradio-container {
|
638 |
+
background-color: #2C2C2C; /* Dark background color */
|
639 |
+
padding: 20px;
|
640 |
+
color: white;
|
641 |
+
}
|
642 |
+
|
643 |
+
/* Saved State Item */
|
644 |
+
.saved-state-item {
|
645 |
+
padding: 10px;
|
646 |
+
margin: 5px 0;
|
647 |
+
border-radius: 5px;
|
648 |
+
background-color: #333333; /* Dark gray background for saved state items */
|
649 |
+
color: #ffffff; /* White text color */
|
650 |
+
cursor: pointer;
|
651 |
+
transition: background-color 0.2s;
|
652 |
+
border: 1px solid #444444;
|
653 |
+
}
|
654 |
+
|
655 |
+
.saved-state-item:hover {
|
656 |
+
background-color: #444444; /* Slightly lighter gray on hover */
|
657 |
+
}
|
658 |
+
|
659 |
+
/* Delete Button */
|
660 |
+
.delete-button {
|
661 |
+
color: #ff6b6b; /* Red color for delete button */
|
662 |
+
margin-left: 10px;
|
663 |
+
float: right;
|
664 |
+
font-weight: bold;
|
665 |
+
}
|
666 |
+
|
667 |
+
/* Filesystem Sessions Container */
|
668 |
+
.filesystem-sessions-container {
|
669 |
+
max-height: 400px;
|
670 |
+
overflow-y: auto;
|
671 |
+
padding: 5px;
|
672 |
+
border: 1px solid #444;
|
673 |
+
border-radius: 5px;
|
674 |
+
background-color: #222222; /* Dark background for the session container */
|
675 |
+
}
|
676 |
+
|
677 |
+
/* Highlight effect when clicking */
|
678 |
+
.saved-state-item:active {
|
679 |
+
background-color: #555555; /* Darker gray when clicking */
|
680 |
+
}
|
681 |
+
"""
|
682 |
+
|
683 |
+
|
684 |
+
demo.css = theme_css
|
685 |
+
|
686 |
+
if __name__ == "__main__":
|
687 |
+
demo.launch(debug=True)
|