File size: 23,832 Bytes
886f19c 148954b b1e77cd 148954b e1b1d56 148954b dc4fe0a 148954b d783a74 9ac3108 d783a74 9ac3108 dc4fe0a 9ac3108 d783a74 9ac3108 d783a74 dc4fe0a 9ac3108 dc4fe0a 9ac3108 148954b dc4fe0a 148954b 9ac3108 e1b1d56 148954b dc4fe0a 148954b dc4fe0a d783a74 148954b 9ac3108 dc4fe0a 148954b dc4fe0a 148954b dc4fe0a 148954b d783a74 b1e77cd d783a74 dc4fe0a b1e77cd dc4fe0a d783a74 dc4fe0a b1e77cd dc4fe0a 148954b 9ac3108 dc4fe0a 9ac3108 d783a74 9ac3108 d783a74 9ac3108 e1b1d56 dc4fe0a e1b1d56 dc4fe0a e1b1d56 9ac3108 e1b1d56 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a d783a74 dc4fe0a 148954b b1e77cd d783a74 148954b b1e77cd d783a74 b1e77cd e1b1d56 9ac3108 e1b1d56 dc4fe0a e1b1d56 148954b d783a74 dc4fe0a d783a74 dc4fe0a 9ac3108 d783a74 148954b dc4fe0a e1b1d56 9ac3108 dc4fe0a d783a74 148954b d783a74 e1b1d56 b1e77cd 9ac3108 b1e77cd 148954b dc4fe0a d783a74 e1b1d56 b1e77cd d783a74 148954b 9ac3108 b1e77cd d783a74 dc4fe0a 9ac3108 dc4fe0a 9ac3108 dc4fe0a 9ac3108 d783a74 9ac3108 d783a74 f6d4fda d783a74 9ac3108 d783a74 9ac3108 d783a74 dc4fe0a 9ac3108 d783a74 b1e77cd dc4fe0a d783a74 dc4fe0a b1e77cd dc4fe0a d783a74 dc4fe0a e1b1d56 9ac3108 148954b dc4fe0a 148954b d783a74 e1b1d56 d783a74 e1b1d56 dc4fe0a d783a74 148954b d783a74 148954b dc4fe0a 148954b dc4fe0a d783a74 dc4fe0a 148954b d783a74 dc4fe0a 148954b d783a74 148954b dc4fe0a 148954b dc4fe0a 148954b dc4fe0a ad05698 dc4fe0a d783a74 dc4fe0a 148954b ad05698 dc4fe0a 9ac3108 148954b dc4fe0a 148954b d783a74 dc4fe0a 9ac3108 148954b dc4fe0a 148954b dc4fe0a d783a74 148954b dc4fe0a 148954b 9ac3108 148954b b1e77cd 148954b b1e77cd d783a74 b1e77cd e1b1d56 d783a74 e1b1d56 d783a74 e1b1d56 9ac3108 e1b1d56 dc4fe0a e1b1d56 148954b d783a74 148954b d783a74 148954b dc4fe0a 148954b dc4fe0a 148954b dc4fe0a 148954b dc4fe0a d783a74 dc4fe0a 148954b d783a74 148954b dc4fe0a 148954b dc4fe0a 148954b dc4fe0a d783a74 148954b dc4fe0a 148954b dc4fe0a e1b1d56 dc4fe0a e1b1d56 dc4fe0a e1b1d56 9ac3108 dc4fe0a d783a74 dc4fe0a 9ac3108 d783a74 9ac3108 dc4fe0a 9ac3108 dc4fe0a d783a74 dc4fe0a d783a74 b1e77cd dc4fe0a d783a74 dc4fe0a 9ac3108 148954b d783a74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
#!/usr/bin/env python3
"""
Turkish Medical Model API - No Flash Attention Dependency
Focus on LoRA loading with compiler support
"""
import os
import shutil
import logging
import time
import asyncio
import gc
from typing import Dict, Optional, List
import json
# CRITICAL: Set cache directories and compiler BEFORE importing anything
CACHE_DIR = "/tmp/hf_cache"
TRITON_CACHE = "/tmp/triton_cache"
# Set compiler environment variables FIRST
os.environ["CC"] = "gcc"
os.environ["CXX"] = "g++"
# Set environment variables for L4 optimization
os.environ["HF_HOME"] = CACHE_DIR
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
os.environ["HF_DATASETS_CACHE"] = CACHE_DIR
os.environ["HF_HUB_CACHE"] = CACHE_DIR
os.environ["TRITON_CACHE_DIR"] = TRITON_CACHE
os.environ["CUDA_CACHE_PATH"] = "/tmp/cuda_cache"
# L4 Performance optimization
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
# Compiler and build settings
os.environ["MAX_JOBS"] = "4"
# Keep compilation disabled for PyTorch
os.environ["TORCH_COMPILE"] = "0"
os.environ["PYTORCH_COMPILE"] = "0"
# Create cache directories
for cache_path in [CACHE_DIR, TRITON_CACHE, "/tmp/cuda_cache"]:
os.makedirs(cache_path, exist_ok=True)
os.chmod(cache_path, 0o777)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from peft import PeftModel
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Get HF token
HF_TOKEN = os.getenv("HF_TOKEN")
# Global variables
tokenizer = None
model = None
generation_config = None
model_loaded = False
loading_error = None
device = "cuda:0"
lora_loaded = False
# Pydantic models
class Message(BaseModel):
role: str # "user" or "assistant"
content: str
class ChatRequest(BaseModel):
message: str
max_tokens: int = 200
temperature: float = 0.7
conversation_history: Optional[List[Message]] = []
class ConversationRequest(BaseModel):
messages: List[Message]
max_tokens: int = 200
temperature: float = 0.7
class ChatResponse(BaseModel):
response: str
generation_time: float
tokens_generated: int
conversation_turn: int
class HealthResponse(BaseModel):
status: str
model_loaded: bool
gpu_available: bool
error: Optional[str] = None
def check_compiler():
"""Check if C compiler is available"""
try:
import subprocess
result = subprocess.run(['gcc', '--version'], capture_output=True, text=True)
if result.returncode == 0:
logger.info("✅ GCC compiler found")
logger.info(f"🔧 GCC version: {result.stdout.split()[2]}")
return True
else:
logger.error("❌ GCC compiler not found")
return False
except Exception as e:
logger.error(f"❌ Compiler check failed: {e}")
return False
def setup_l4_optimization():
"""Setup optimizations specific to Nvidia L4 (without Flash Attention)"""
if torch.cuda.is_available():
# L4 specific settings
torch.cuda.set_per_process_memory_fraction(0.85) # Use 85% to leave room for LoRA
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
logger.info("🎯 L4 optimizations enabled: TF32, Memory optimized")
def clear_gpu_memory():
"""Optimized GPU memory cleanup for L4"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def setup_cache_directories():
"""Setup cache directories"""
cache_dirs = [CACHE_DIR, TRITON_CACHE, "/tmp/cuda_cache", "/tmp/.cache"]
for cache_dir in cache_dirs:
try:
os.makedirs(cache_dir, exist_ok=True)
os.chmod(cache_dir, 0o777)
logger.info(f"✅ Created cache dir: {cache_dir}")
except Exception as e:
logger.warning(f"⚠️ Could not create {cache_dir}: {e}")
def clear_cache_locks():
"""Clear cache locks"""
try:
all_cache_dirs = [CACHE_DIR, TRITON_CACHE, "/tmp/cuda_cache", "/tmp/.cache"]
for cache_dir in all_cache_dirs:
if os.path.exists(cache_dir):
for root, dirs, files in os.walk(cache_dir):
for file in files:
if file.endswith('.lock') or file.endswith('.incomplete'):
lock_file = os.path.join(root, file)
try:
os.remove(lock_file)
except:
pass
except Exception as e:
logger.warning(f"Could not clear cache locks: {e}")
def format_medical_conversation(messages: List[Message]) -> str:
"""Format conversation for Turkish medical context"""
conversation = "Bu bir Türkçe hasta-doktor görüşmesidir. Doktor profesyonel, empatik ve tıbbi bilgiye dayalı yanıtlar verir.\n\n"
for i, msg in enumerate(messages):
if msg.role == "assistant":
conversation += f"Doktor: {msg.content}\n"
else:
conversation += f"Hasta: {msg.content}\n"
conversation += "Doktor:"
return conversation
def clean_medical_response(response: str) -> str:
"""Clean and validate Turkish medical response"""
# Remove extra whitespace
response = response.strip()
# Remove role prefixes
prefixes_to_remove = ["Doktor:", "Hasta:", "Assistant:", "Human:", "Dr.", "Patient:"]
for prefix in prefixes_to_remove:
if response.startswith(prefix):
response = response[len(prefix):].strip()
# Remove unwanted dialogue patterns
unwanted_patterns = [
"Hasta :", "Hasta:", "HASTA:", "Dokтор:", "DOKTOR:", "DİĞER HASTA",
"DOKTÖR:", "(gülmeye başlıyor)", "(kıkırdayarak)", "arkada", "arkadan"
]
for pattern in unwanted_patterns:
response = response.replace(pattern, "")
# Clean sentences
sentences = response.split('.')
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if (len(sentence) > 15 and
not any(bad_word in sentence.lower() for bad_word in ["hasta", "gülme", "kıkırd", "arkada"])):
clean_sentences.append(sentence)
if len(clean_sentences) >= 2:
break
if clean_sentences:
response = '. '.join(clean_sentences)
if not response.endswith('.'):
response += '.'
else:
response = "Bu konuda size yardımcı olmaya çalışayım. Lütfen belirtilerinizi daha detaylı anlatabilir misiniz?"
return response
async def load_model():
"""Load model with focus on LoRA compilation"""
global tokenizer, model, generation_config, model_loaded, loading_error, lora_loaded
if model_loaded:
return True
try:
logger.info("🚀 Loading Turkish Medical Model - LoRA Focus...")
# Check compiler first
compiler_available = check_compiler()
if not compiler_available:
logger.warning("⚠️ C compiler not available, LoRA compilation may fail")
setup_cache_directories()
clear_cache_locks()
setup_l4_optimization()
clear_gpu_memory()
start_time = time.time()
# Check GPU
if torch.cuda.is_available():
props = torch.cuda.get_device_properties(0)
total_memory = props.total_memory / (1024**3)
logger.info(f"🎮 GPU: {props.name}")
logger.info(f"🎮 Total VRAM: {total_memory:.1f}GB")
# Load tokenizer
logger.info("📚 Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(
"Conquerorr000/llama-3.1-8b-turkish-medical-lora",
cache_dir=CACHE_DIR,
trust_remote_code=True,
token=HF_TOKEN,
use_fast=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info("✅ Tokenizer loaded successfully")
# Load base model with memory optimization for LoRA
logger.info("🧠 Loading base model (FP16 - optimized for LoRA)...")
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
cache_dir=CACHE_DIR,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
token=HF_TOKEN,
attn_implementation="eager", # Use eager attention (stable)
use_cache=True,
max_memory={0: "18GiB"} # Leave memory for LoRA
)
logger.info("✅ Base model loaded (eager attention)")
# Check memory after base model
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / (1024**3)
logger.info(f"🎮 Memory after base model: {allocated:.2f}GB")
# Load LoRA adapter with enhanced error handling
logger.info("🎯 Loading Turkish Medical LoRA adapter...")
try:
# Enhanced LoRA loading with multiple fallback strategies
logger.info("🔧 Attempting LoRA compilation...")
lora_model = PeftModel.from_pretrained(
model,
"Conquerorr000/llama-3.1-8b-turkish-medical-lora",
cache_dir=CACHE_DIR,
torch_dtype=torch.float16,
token=HF_TOKEN,
is_trainable=False,
device_map="auto"
)
logger.info("✅ Turkish Medical LoRA adapter loaded successfully!")
lora_loaded = True
# Try to merge LoRA for better performance
logger.info("🔗 Attempting to merge LoRA adapter...")
try:
# Check if we have enough memory for merging
if torch.cuda.is_available():
free_memory = torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated(0)
free_gb = free_memory / (1024**3)
logger.info(f"🎮 Free memory for merge: {free_gb:.2f}GB")
if free_gb > 3.0: # Need at least 3GB for merge
model = lora_model.merge_and_unload()
logger.info("✅ Turkish Medical LoRA merged successfully!")
else:
logger.info("📝 Using LoRA as adapter (insufficient memory for merge)")
model = lora_model
except Exception as merge_error:
logger.warning(f"⚠️ LoRA merge failed: {merge_error}")
logger.info("📝 Using Turkish Medical LoRA as adapter")
model = lora_model
except Exception as lora_error:
logger.error(f"❌ Turkish Medical LoRA loading failed: {lora_error}")
# Try alternative LoRA loading methods
logger.info("🔄 Trying alternative LoRA loading...")
try:
# Alternative method: Load with CPU offload
lora_model = PeftModel.from_pretrained(
model,
"Conquerorr000/llama-3.1-8b-turkish-medical-lora",
cache_dir=CACHE_DIR,
torch_dtype=torch.float16,
token=HF_TOKEN,
is_trainable=False,
device_map=None # Load on CPU first
)
# Then move to GPU
lora_model = lora_model.to(device)
model = lora_model
lora_loaded = True
logger.info("✅ Turkish Medical LoRA loaded with alternative method!")
except Exception as alt_error:
logger.error(f"❌ Alternative LoRA loading also failed: {alt_error}")
logger.error("❌ CRITICAL: Model will not have Turkish medical fine-tuning!")
loading_error = f"LoRA loading failed: {str(lora_error)}"
lora_loaded = False
# Setup generation config optimized for Turkish medical responses
generation_config = GenerationConfig(
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
no_repeat_ngram_size=3,
use_cache=True
)
# Set to evaluation mode
model.eval()
# Final memory cleanup
clear_gpu_memory()
loading_time = time.time() - start_time
logger.info(f"✅ Model loading completed in {loading_time:.2f}s")
# Log final status
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
allocated = torch.cuda.memory_allocated(0) / (1024**3)
free = total_memory - allocated
logger.info(f"🎮 Final Memory: Allocated={allocated:.2f}GB, Free={free:.2f}GB")
status = "✅ TURKISH MEDICAL MODEL READY" if lora_loaded else "⚠️ BASE MODEL ONLY (NO MEDICAL TRAINING)"
logger.info(status)
model_loaded = True
return True
except Exception as e:
error_msg = f"Model loading failed: {str(e)}"
logger.error(f"❌ {error_msg}")
loading_error = error_msg
model_loaded = False
clear_gpu_memory()
return False
async def generate_response(messages: List[Message], max_tokens: int = 200, temperature: float = 0.7) -> Dict:
"""Generate Turkish medical response"""
global model, tokenizer, generation_config
if not model_loaded:
raise HTTPException(status_code=503, detail="Model not loaded")
try:
start_time = time.time()
# Format conversation for Turkish medical context
conversation_text = format_medical_conversation(messages)
# Tokenize
inputs = tokenizer(
conversation_text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=1024,
add_special_tokens=True
)
# Move to GPU
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate with medical optimization - FIXED: removed duplicate attention_mask
gen_config = GenerationConfig(
max_new_tokens=min(max_tokens, 150),
temperature=temperature,
top_p=0.9,
top_k=50,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
no_repeat_ngram_size=3,
use_cache=True
)
with torch.no_grad():
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
generation_config=gen_config,
use_cache=True
)
# Decode response
input_length = inputs["input_ids"].shape[1]
generated_ids = outputs[0][input_length:]
generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True)
# Clean Turkish medical response
response = clean_medical_response(generated_text)
generation_time = time.time() - start_time
# Cleanup
del outputs, generated_ids
torch.cuda.empty_cache()
return {
"response": response,
"generation_time": round(generation_time, 3),
"tokens_generated": len(generated_text.split()),
"conversation_turn": len(messages) + 1,
"lora_active": lora_loaded
}
except Exception as e:
logger.error(f"Generation error: {e}")
torch.cuda.empty_cache()
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
# Create FastAPI app
app = FastAPI(
title="Turkish Medical Model API",
description="Turkish medical conversation model - Stable build",
version="2.1.1"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
"""Load model on startup"""
logger.info("🚀 Starting API server - Stable build...")
logger.info(f"📁 HF Cache: {CACHE_DIR}")
logger.info(f"🎮 Target GPU: Nvidia L4 24GB")
logger.info(f"💾 Mode: FP16 + Turkish Medical LoRA")
logger.info(f"🔧 Compiler: {os.environ.get('CC', 'Not Set')}")
logger.info(f"⚡ Attention: Eager (stable)")
if HF_TOKEN:
logger.info("✅ HF Token found")
else:
logger.info("ℹ️ No HF Token")
setup_cache_directories()
clear_cache_locks()
setup_l4_optimization()
# Start model loading
asyncio.create_task(load_model())
@app.get("/", response_model=HealthResponse)
async def root():
return HealthResponse(
status="healthy" if model_loaded else "loading",
model_loaded=model_loaded,
gpu_available=torch.cuda.is_available(),
error=loading_error
)
@app.get("/health", response_model=HealthResponse)
async def health_check():
return HealthResponse(
status="healthy" if (model_loaded and lora_loaded) else "degraded" if model_loaded else "loading",
model_loaded=model_loaded,
gpu_available=torch.cuda.is_available(),
error=loading_error
)
@app.post("/chat", response_model=ChatResponse)
async def chat_endpoint(request: ChatRequest):
"""Turkish medical chat endpoint"""
try:
messages = request.conversation_history or []
messages.append(Message(role="user", content=request.message))
result = await generate_response(
messages,
request.max_tokens,
request.temperature
)
return ChatResponse(
response=result["response"],
generation_time=result["generation_time"],
tokens_generated=result["tokens_generated"],
conversation_turn=result["conversation_turn"]
)
except Exception as e:
logger.error(f"Chat error: {e}")
raise HTTPException(status_code=500, detail=f"Chat failed: {str(e)}")
@app.post("/conversation", response_model=ChatResponse)
async def conversation_endpoint(request: ConversationRequest):
"""Turkish medical conversation endpoint"""
try:
result = await generate_response(
request.messages,
request.max_tokens,
request.temperature
)
return ChatResponse(
response=result["response"],
generation_time=result["generation_time"],
tokens_generated=result["tokens_generated"],
conversation_turn=result["conversation_turn"]
)
except Exception as e:
logger.error(f"Conversation error: {e}")
raise HTTPException(status_code=500, detail=f"Conversation failed: {str(e)}")
@app.get("/test")
async def test_endpoint():
"""Turkish medical test"""
if not model_loaded:
return {
"status": "model_not_ready",
"message": "Model is still loading...",
"error": loading_error
}
try:
test_messages = [
Message(role="user", content="Merhaba doktor, 2 gündür başım ağrıyor ve ateşim var.")
]
result = await generate_response(test_messages, 150, 0.7)
return {
"status": "success",
"test_input": test_messages[0].content,
"test_output": result["response"],
"generation_time": result["generation_time"],
"device_info": device,
"lora_active": result.get("lora_active", False),
"model_type": "Turkish Medical LoRA" if lora_loaded else "Base Llama (NO MEDICAL TRAINING)"
}
except Exception as e:
logger.error(f"Test error: {e}")
return {
"status": "error",
"message": f"Test failed: {str(e)}"
}
@app.get("/memory-status")
async def memory_status():
"""Get GPU memory status"""
memory_info = {"gpu_available": torch.cuda.is_available()}
if torch.cuda.is_available():
props = torch.cuda.get_device_properties(0)
total_memory = props.total_memory / (1024**3)
allocated = torch.cuda.memory_allocated(0) / (1024**3)
reserved = torch.cuda.memory_reserved(0) / (1024**3)
free = total_memory - allocated
memory_info.update({
"gpu_name": props.name,
"total_memory_gb": round(total_memory, 2),
"allocated_memory_gb": round(allocated, 2),
"reserved_memory_gb": round(reserved, 2),
"free_memory_gb": round(free, 2),
"utilization_percent": round((allocated / total_memory) * 100, 1)
})
return memory_info
@app.get("/debug")
async def debug_info():
"""Enhanced debug information"""
model_device_info = {}
if model:
try:
devices = set()
for param in model.parameters():
devices.add(str(param.device))
break
model_device_info = {
"model_devices": list(devices),
"device_consistent": len(devices) == 1,
"first_param_device": str(next(model.parameters()).device)
}
except:
model_device_info = {"error": "Could not get model device info"}
memory_info = await memory_status()
return {
"model_status": {
"model_loaded": model_loaded,
"lora_loaded": lora_loaded,
"loading_error": loading_error,
"model_type": type(model).__name__ if model else None,
**model_device_info
},
"system_info": {
"target_device": device,
"gpu_available": torch.cuda.is_available(),
"torch_version": torch.__version__,
"cuda_version": torch.version.cuda if torch.cuda.is_available() else None,
"compiler": os.environ.get("CC", "Not Set")
},
"memory_info": memory_info,
"optimization_info": {
"precision": "FP16",
"quantization": "None",
"flash_attention": "Disabled (stable build)",
"tf32": "Enabled",
"lora_status": "Loaded" if lora_loaded else "FAILED - NO MEDICAL TRAINING",
"medical_fine_tuning": "Active" if lora_loaded else "MISSING"
},
"cache_info": {
"hf_cache": CACHE_DIR,
"cache_exists": os.path.exists(CACHE_DIR),
"cache_writable": os.access(CACHE_DIR, os.W_OK) if os.path.exists(CACHE_DIR) else False
}
}
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860) |