File size: 18,438 Bytes
6395478
 
 
 
 
 
8198856
6395478
 
 
 
 
7e8c870
 
 
 
 
 
3cbf586
e108f99
 
b3564a4
 
e108f99
610ce11
 
 
 
 
e108f99
 
 
 
 
c4be662
 
 
 
 
e108f99
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4be662
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
c4be662
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ce11
6395478
c4be662
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ce11
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbf586
6395478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610ce11
6395478
c4be662
6395478
 
2112ee7
4f05e66
 
 
 
 
 
 
 
 
2112ee7
4f05e66
2112ee7
 
 
 
 
4f05e66
2112ee7
 
 
 
6395478
 
77eaebf
6395478
77eaebf
 
 
 
 
 
 
 
 
6395478
77eaebf
6395478
 
2112ee7
 
 
3cbf586
2112ee7
 
 
 
6395478
2112ee7
 
 
 
 
6395478
610ce11
3cbf586
c4be662
6395478
 
adface3
6395478
 
 
adface3
 
 
 
 
 
 
 
 
77eaebf
3c271e0
 
adface3
77eaebf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from llama_index.core.agent.workflow import FunctionAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import VectorStoreIndex, Document
from llama_index.core.node_parser import SentenceWindowNodeParser, HierarchicalNodeParser
from llama_index.core.postprocessor import SentenceTransformerRerank
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.readers.file import PDFReader, DocxReader, CSVReader, ImageReader
import os
from typing import List, Dict, Any
from llama_index.readers.web import SimpleWebPageReader
from llama_index.core.tools.ondemand_loader_tool import OnDemandLoaderTool
from llama_index.tools.arxiv import ArxivToolSpec
import duckduckgo_search as ddg
import re
from llama_index.core.agent.workflow import ReActAgent
from llama_index.llms.openrouter import OpenRouter
import wandb
from llama_index.callbacks.wandb import WandbCallbackHandler
from llama_index.core.callbacks.base import CallbackManager
from llama_index.core.callbacks.llama_debug import LlamaDebugHandler

proj_llm = OpenRouter(
    model="mistralai/mistral-small-3.1-24b-instruct:free", 
    api_key=os.getenv("OPENROUTER_API_KEY"),  
)

wandb.init(project="gaia-llamaindex-agents")  # Choisis ton nom de projet
wandb_callback = WandbCallbackHandler(run_args={"project": "gaia-llamaindex-agents"})
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
callback_manager = CallbackManager([wandb_callback, llama_debug])

from llama_index.core import Settings

Settings.llm = llm
Settings.embed_model = embed_model
Settings.callback_manager = callback_manager



class EnhancedRAGQueryEngine:
    def __init__(self, task_context: str = ""):
        self.task_context = task_context
        self.embed_model = HuggingFaceEmbedding("BAAI/bge-small-en-v1.5")
        self.reranker = SentenceTransformerRerank(model="cross-encoder/ms-marco-MiniLM-L-2-v2", top_n=5)
        
        self.readers = {
            '.pdf': PDFReader(),
            '.docx': DocxReader(),
            '.doc': DocxReader(),
            '.csv': CSVReader(),
            '.txt': lambda file_path: [Document(text=open(file_path, 'r').read())],
            '.jpg': ImageReader(),
            '.jpeg': ImageReader(),
            '.png': ImageReader()
        }
        
        self.sentence_window_parser = SentenceWindowNodeParser.from_defaults(
            window_size=3,
            window_metadata_key="window",
            original_text_metadata_key="original_text"
        )
        
        self.hierarchical_parser = HierarchicalNodeParser.from_defaults(
            chunk_sizes=[2048, 512, 128]
        )
    
    def load_and_process_documents(self, file_paths: List[str]) -> List[Document]:
        documents = []
        
        for file_path in file_paths:
            file_ext = os.path.splitext(file_path)[1].lower()
            
            try:
                if file_ext in self.readers:
                    reader = self.readers[file_ext]
                    if callable(reader):
                        docs = reader(file_path)
                    else:
                        docs = reader.load_data(file=file_path)
                    
                    # Add metadata to all documents
                    for doc in docs:
                        doc.metadata.update({
                            "file_path": file_path,
                            "file_type": file_ext[1:],
                            "task_context": self.task_context
                        })
                    documents.extend(docs)
                        
            except Exception as e:
                # Fallback to text reading
                try:
                    with open(file_path, 'r', encoding='utf-8') as f:
                        content = f.read()
                    documents.append(Document(
                        text=content,
                        metadata={"file_path": file_path, "file_type": "text", "error": str(e)}
                    ))
                except:
                    print(f"Failed to process {file_path}: {e}")
        
        return documents
    
    def create_advanced_index(self, documents: List[Document], use_hierarchical: bool = False) -> VectorStoreIndex:
        if use_hierarchical or len(documents) > 10:
            nodes = self.hierarchical_parser.get_nodes_from_documents(documents)
        else:
            nodes = self.sentence_window_parser.get_nodes_from_documents(documents)
        
        index = VectorStoreIndex(
            nodes,
            embed_model=self.embed_model
        )
        
        return index
    
    def create_context_aware_query_engine(self, index: VectorStoreIndex):
        retriever = VectorIndexRetriever(
            index=index,
            similarity_top_k=10,
            embed_model=self.embed_model
        )
        
        query_engine = RetrieverQueryEngine(
            retriever=retriever,
            node_postprocessors=[self.reranker],
            llm=proj_llm
        )
        
        return query_engine

def comprehensive_rag_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
    try:
        rag_engine = EnhancedRAGQueryEngine(task_context)
        documents = rag_engine.load_and_process_documents(file_paths)
        
        if not documents:
            return "No documents could be processed successfully."
        
        total_text_length = sum(len(doc.text) for doc in documents)
        use_hierarchical = total_text_length > 50000 or len(documents) > 5
        
        index = rag_engine.create_advanced_index(documents, use_hierarchical)
        query_engine = rag_engine.create_context_aware_query_engine(index)
        
        enhanced_query = f"""
        Task Context: {task_context}
        Original Query: {query}
        
        Please analyze the provided documents and answer the query with precise, factual information.
        """
        
        response = query_engine.query(enhanced_query)
        
        result = f"**RAG Analysis Results:**\n\n"
        result += f"**Documents Processed:** {len(documents)}\n"
        result += f"**Answer:**\n{response.response}\n\n"
        
        return result
        
    except Exception as e:
        return f"RAG analysis failed: {str(e)}"

def cross_document_analysis(file_paths: List[str], query: str, task_context: str = "") -> str:
    try:
        rag_engine = EnhancedRAGQueryEngine(task_context)
        all_documents = []
        document_groups = {}
        
        for file_path in file_paths:
            docs = rag_engine.load_and_process_documents([file_path])
            doc_key = os.path.basename(file_path)
            document_groups[doc_key] = docs
            
            for doc in docs:
                doc.metadata.update({
                    "document_group": doc_key,
                    "total_documents": len(file_paths)
                })
            all_documents.extend(docs)
        
        index = rag_engine.create_advanced_index(all_documents, use_hierarchical=True)
        query_engine = rag_engine.create_context_aware_query_engine(index)
        
        response = query_engine.query(f"Task: {task_context}\nQuery: {query}")
        
        result = f"**Cross-Document Analysis:**\n"
        result += f"**Documents:** {list(document_groups.keys())}\n"
        result += f"**Answer:**\n{response.response}\n"
        
        return result
        
    except Exception as e:
        return f"Cross-document analysis failed: {str(e)}"

# Create tools
enhanced_rag_tool = FunctionTool.from_defaults(
    fn=comprehensive_rag_analysis,
    name="Enhanced RAG Analysis",
    description="Comprehensive document analysis using advanced RAG with hybrid search and context-aware processing"
)

cross_document_tool = FunctionTool.from_defaults(
    fn=cross_document_analysis,
    name="Cross-Document Analysis", 
    description="Advanced analysis across multiple documents with cross-referencing capabilities"
)

# Analysis Agent
analysis_agent = FunctionAgent(
    name="AnalysisAgent",
    description="Advanced multimodal analysis using enhanced RAG with hybrid search and cross-document capabilities",
    system_prompt="""
    You are an advanced analysis specialist with access to:
    - Enhanced RAG with hybrid search and reranking
    - Multi-format document processing (PDF, Word, CSV, images, text)
    - Cross-document analysis and synthesis
    - Context-aware query processing
    
    Your capabilities:
    1. Process multiple file types simultaneously
    2. Perform semantic search across document collections
    3. Cross-reference information between documents
    4. Extract precise information with source attribution
    5. Handle both text and visual content analysis
    
    Always consider the GAIA task context and provide precise, well-sourced answers.
    """,
    llm=proj_llm,
    tools=[enhanced_rag_tool, cross_document_tool],
    max_steps=5
)


class IntelligentSourceRouter:
    def __init__(self):
        # Initialize tools - only ArXiv and web search
        self.arxiv_spec = ArxivToolSpec()
        
        # Add web content loader
        self.web_reader = SimpleWebPageReader()
        
        # Create OnDemandLoaderTool for web content
        self.web_loader_tool = OnDemandLoaderTool.from_defaults(
            self.web_reader,
            name="Web Content Loader",
            description="Load and analyze web page content with intelligent chunking and search"
        )
            
    def web_search_fallback(self, query: str, max_results: int = 5) -> str:
        try:
            results = ddg.DDGS().text(query, max_results=max_results)
            return "\n".join([f"{i}. **{r['title']}**\n   URL: {r['href']}\n   {r['body']}" for i, r in enumerate(results, 1)])
        except Exception as e:
            return f"Search failed: {str(e)}"
    
    def extract_web_content(self, urls: List[str], query: str) -> str:
        """Extract and analyze content from web URLs"""
        try:
            content_results = []
            for url in urls[:3]:  # Limit to top 3 URLs
                try:
                    result = self.web_loader_tool.call(
                        urls=[url],
                        query=f"Extract information relevant to: {query}"
                    )
                    content_results.append(f"**Content from {url}:**\n{result}")
                except Exception as e:
                    content_results.append(f"**Failed to load {url}**: {str(e)}")
            
            return "\n\n".join(content_results)
        except Exception as e:
            return f"Content extraction failed: {str(e)}"
    
    def detect_intent_and_route(self, query: str) -> str:
        # Simple LLM-based discrimination: scientific vs non-scientific
        intent_prompt = f"""
        Analyze this query and determine if it's scientific research or general information:
        Query: "{query}"
        
        Choose ONE source:
        - arxiv: For scientific research, academic papers, technical studies, algorithms, experiments
        - web_search: For all other information (current events, general facts, weather, how-to guides, etc.)
        
        Respond with ONLY "arxiv" or "web_search".
        """
        
        response = proj_llm.complete(intent_prompt)
        selected_source = response.text.strip().lower()
        
        # Execute search and extract content
        results = [f"**Query**: {query}", f"**Selected Source**: {selected_source}", "="*50]
        
        try:
            if selected_source == 'arxiv':
                result = self.arxiv_spec.to_tool_list()[0].call(query=query, max_results=3)
                results.append(f"**ArXiv Research:**\n{result}")
                
            else:  # Default to web_search for everything else
                # Get search results
                search_results = self.web_search_fallback(query, 5)
                results.append(f"**Web Search Results:**\n{search_results}")
                
                # Extract URLs and load content
                urls = re.findall(r'URL: (https?://[^\s]+)', search_results)
                if urls:
                    web_content = self.extract_web_content(urls, query)
                    results.append(f"**Extracted Web Content:**\n{web_content}")
                    
        except Exception as e:
            results.append(f"**Search failed**: {str(e)}")
        
        return "\n\n".join(results)

# Initialize router
intelligent_router = IntelligentSourceRouter()

# Create enhanced research tool
def enhanced_smart_research_tool(query: str, task_context: str = "", max_results: int = 5) -> str:
    full_query = f"{query} {task_context}".strip()
    return intelligent_router.detect_intent_and_route(full_query)

research_tool = FunctionTool.from_defaults(
    fn=enhanced_smart_research_tool,
    name="Enhanced Research Tool",
    description="Intelligent research tool that discriminates between scientific (ArXiv) and general (web) research with deep content extraction"
)

def execute_python_code(code: str) -> str:
    try:
        safe_globals = {
            "__builtins__": {
                "len": len, "str": str, "int": int, "float": float,
                "list": list, "dict": dict, "sum": sum, "max": max, "min": min,
                "round": round, "abs": abs, "sorted": sorted
            },
            "math": __import__("math"),
            "datetime": __import__("datetime"),
            "re": __import__("re")
        }
        
        exec_locals = {}
        exec(code, safe_globals, exec_locals)
        
        if 'result' in exec_locals:
            return str(exec_locals['result'])
        else:
            return "Code executed successfully"
            
    except Exception as e:
        return f"Code execution failed: {str(e)}"

code_execution_tool = FunctionTool.from_defaults(
    fn=execute_python_code,
    name="Python Code Execution",
    description="Execute Python code safely for calculations and data processing"
)

# Code Agent as ReActAgent
code_agent = ReActAgent(
    name="CodeAgent",
    description="Advanced calculations, data processing, and final answer synthesis using ReAct reasoning",
    system_prompt="""
    You are a coding and reasoning specialist using ReAct methodology.
    
    For each task:
    1. THINK: Analyze what needs to be calculated or processed
    2. ACT: Execute appropriate code or calculations
    3. OBSERVE: Review results and determine if more work is needed
    4. REPEAT: Continue until you have the final answer
    
    Always show your reasoning process clearly and provide exact answers as required by GAIA.
    """,
    llm=proj_llm,
    tools=[code_execution_tool],
    max_steps = 5
)

# Créer des outils à partir des agents
def analysis_function(query: str, files=None):
    ctx = Context(analysis_agent)
    return analysis_agent.run(query, ctx=ctx)


def code_function(query: str):
    ctx = Context(code_agent)
    return code_agent.run(query, ctx=ctx)

analysis_tool = FunctionTool.from_defaults(
    fn=analysis_function,
    name="AnalysisAgent",
    description="Advanced multimodal analysis using enhanced RAG"
)

code_tool = FunctionTool.from_defaults(
    fn=code_function,
    name="CodeAgent",
    description="Advanced calculations and data processing"
)

class EnhancedGAIAAgent:
    def __init__(self):
        print("Initializing Enhanced GAIA Agent...")
        
        # Vérification du token HuggingFace
        hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
        if not hf_token:
            raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is required")
        
        # Agent coordinateur principal qui utilise les agents spécialisés comme tools
        self.coordinator = ReActAgent(
            name="GAIACoordinator",
            description="Main GAIA coordinator that uses specialist agents as intelligent tools",
            system_prompt="""
            You are the main GAIA coordinator using ReAct reasoning methodology.
            
            Your process:
            1. THINK: Analyze the GAIA question thoroughly            
            2. ACT: Use your specialist tools IF RELEVANT            
            3. OBSERVE: Review results from specialist tools 
            4. REPEAT: Continue until you have the final answer. If you give a final answer, FORMAT: Ensure answer is EXACT GAIA format (number only, word only, etc.)

            
            IMPORTANT: Use tools strategically - only when their specific expertise is needed.
            For simple questions, you can answer directly without using any tools.
            
            CRITICAL: Your final answer must be EXACT and CONCISE as required by GAIA format:
            - For numbers: provide only the number (e.g., "42" or "3.14")
            - For strings: provide only the exact string (e.g., "Paris" or "Einstein")
            - For lists: use comma separation (e.g., "apple, banana, orange")
            - NO explanations, NO additional text, ONLY the precise answer
            """,
            llm=proj_llm,
            tools=[analysis_tool, research_tool, code_tool], 
            max_steps = 10
        )
    
    async def solve_gaia_question(self, question_data: Dict[str, Any]) -> str:
        question = question_data.get("Question", "")
        task_id = question_data.get("task_id", "")
        context_prompt = f"""
        GAIA Task ID: {task_id}
        Question: {question}
        {f"Associated files: {question_data.get('file_name', '')}" if 'file_name' in question_data else 'No files provided'}
        Instructions:
        1. Analyze this GAIA question using ReAct reasoning
        2. Use specialist tools ONLY when their specific expertise is needed
        3. Provide a precise, exact answer in GAIA format
        Begin your reasoning process:
        """
        try:
            from llama_index.core.workflow import Context
            ctx = Context(self.coordinator)
            response = await self.coordinator.run(ctx=ctx, input=context_prompt)
            return str(response)
        except Exception as e:
            return f"Error processing question: {str(e)}"